{"title":"纳米结构的电化学外延","authors":"Yuwei Guo , Yang Hu , Jian Shi","doi":"10.1016/j.nwnano.2023.100024","DOIUrl":null,"url":null,"abstract":"<div><p>Epitaxy of nanostructured materials is a critical step in developing functional nanodevices. Electrochemical epitaxy has been shown robust and low-cost in advancing the deployment of nanomaterials. This paper offers a brief review on a wide category of nanostructured materials and phases synthesized via electrochemical epitaxy approaches over the past several decades. The review highlights the advantages of electrochemical approach over other high-temperature, high-vacuum technologies in terms of accessibility to target materials’ phases, morphologies and yield. Electrochemical epitaxy's extraordinary ability in enabling certain valence states which cannot be reached at vacuum condition could bring new concepts in developing a plethora of metastable functional materials. It also gives an overview on possible growth modes and mechanisms that may be employed in developing emerging materials and phases.</p></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"4 ","pages":"Article 100024"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666978123000223/pdfft?md5=fc02f12eac76d7dabaf7d30763b2c85a&pid=1-s2.0-S2666978123000223-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Electrochemical epitaxy of nanostructures\",\"authors\":\"Yuwei Guo , Yang Hu , Jian Shi\",\"doi\":\"10.1016/j.nwnano.2023.100024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Epitaxy of nanostructured materials is a critical step in developing functional nanodevices. Electrochemical epitaxy has been shown robust and low-cost in advancing the deployment of nanomaterials. This paper offers a brief review on a wide category of nanostructured materials and phases synthesized via electrochemical epitaxy approaches over the past several decades. The review highlights the advantages of electrochemical approach over other high-temperature, high-vacuum technologies in terms of accessibility to target materials’ phases, morphologies and yield. Electrochemical epitaxy's extraordinary ability in enabling certain valence states which cannot be reached at vacuum condition could bring new concepts in developing a plethora of metastable functional materials. It also gives an overview on possible growth modes and mechanisms that may be employed in developing emerging materials and phases.</p></div>\",\"PeriodicalId\":100942,\"journal\":{\"name\":\"Nano Trends\",\"volume\":\"4 \",\"pages\":\"Article 100024\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666978123000223/pdfft?md5=fc02f12eac76d7dabaf7d30763b2c85a&pid=1-s2.0-S2666978123000223-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666978123000223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978123000223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Epitaxy of nanostructured materials is a critical step in developing functional nanodevices. Electrochemical epitaxy has been shown robust and low-cost in advancing the deployment of nanomaterials. This paper offers a brief review on a wide category of nanostructured materials and phases synthesized via electrochemical epitaxy approaches over the past several decades. The review highlights the advantages of electrochemical approach over other high-temperature, high-vacuum technologies in terms of accessibility to target materials’ phases, morphologies and yield. Electrochemical epitaxy's extraordinary ability in enabling certain valence states which cannot be reached at vacuum condition could bring new concepts in developing a plethora of metastable functional materials. It also gives an overview on possible growth modes and mechanisms that may be employed in developing emerging materials and phases.