{"title":"土壤-景观演化模型的演化路径","authors":"W. M. van der Meij","doi":"10.5194/soil-2021-133","DOIUrl":null,"url":null,"abstract":"Abstract. Soils and landscapes can show complex, non-linear evolution, especially under changing climate or land use. Soil-landscape evolution models (SLEMs) are increasingly equipped to simulate the development of soils and landscapes over long timescales under these changing drivers, but provide large data output that can be difficult to interpret and communicate. New tools are required to analyse and communicate large model output. In this work, I show how spatial and temporal trends in previously published model results can be summarized and conceptualized with evolutionary pathways, which are possible trajectories of the development of soil patterns. Simulated differences in rainfall and land use control progressive or regressive soil development and convergence or divergence of the soil pattern. These changes are illustrated with real-world examples of soil development and soil complexity. The use of evolutionary pathways for analysing the results of SLEMs is not limited to the examples in this paper, but they can be used on a wide variety of soil properties, soil pattern statistics and models. With that, evolutionary pathways provide a promising tool to analyse and communicate soil model output, not only for studying past changes in soils, but also for evaluating future spatial and temporal effects of soil management practices in the context of sustainability.\n","PeriodicalId":22015,"journal":{"name":"Soil Science","volume":"15 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evolutionary pathways in soil-landscape evolution models\",\"authors\":\"W. M. van der Meij\",\"doi\":\"10.5194/soil-2021-133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Soils and landscapes can show complex, non-linear evolution, especially under changing climate or land use. Soil-landscape evolution models (SLEMs) are increasingly equipped to simulate the development of soils and landscapes over long timescales under these changing drivers, but provide large data output that can be difficult to interpret and communicate. New tools are required to analyse and communicate large model output. In this work, I show how spatial and temporal trends in previously published model results can be summarized and conceptualized with evolutionary pathways, which are possible trajectories of the development of soil patterns. Simulated differences in rainfall and land use control progressive or regressive soil development and convergence or divergence of the soil pattern. These changes are illustrated with real-world examples of soil development and soil complexity. The use of evolutionary pathways for analysing the results of SLEMs is not limited to the examples in this paper, but they can be used on a wide variety of soil properties, soil pattern statistics and models. With that, evolutionary pathways provide a promising tool to analyse and communicate soil model output, not only for studying past changes in soils, but also for evaluating future spatial and temporal effects of soil management practices in the context of sustainability.\\n\",\"PeriodicalId\":22015,\"journal\":{\"name\":\"Soil Science\",\"volume\":\"15 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5194/soil-2021-133\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/soil-2021-133","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Evolutionary pathways in soil-landscape evolution models
Abstract. Soils and landscapes can show complex, non-linear evolution, especially under changing climate or land use. Soil-landscape evolution models (SLEMs) are increasingly equipped to simulate the development of soils and landscapes over long timescales under these changing drivers, but provide large data output that can be difficult to interpret and communicate. New tools are required to analyse and communicate large model output. In this work, I show how spatial and temporal trends in previously published model results can be summarized and conceptualized with evolutionary pathways, which are possible trajectories of the development of soil patterns. Simulated differences in rainfall and land use control progressive or regressive soil development and convergence or divergence of the soil pattern. These changes are illustrated with real-world examples of soil development and soil complexity. The use of evolutionary pathways for analysing the results of SLEMs is not limited to the examples in this paper, but they can be used on a wide variety of soil properties, soil pattern statistics and models. With that, evolutionary pathways provide a promising tool to analyse and communicate soil model output, not only for studying past changes in soils, but also for evaluating future spatial and temporal effects of soil management practices in the context of sustainability.
期刊介绍:
Cessation.Soil Science satisfies the professional needs of all scientists and laboratory personnel involved in soil and plant research by publishing primary research reports and critical reviews of basic and applied soil science, especially as it relates to soil and plant studies and general environmental soil science.
Each month, Soil Science presents authoritative research articles from an impressive array of discipline: soil chemistry and biochemistry, physics, fertility and nutrition, soil genesis and morphology, soil microbiology and mineralogy. Of immediate relevance to soil scientists-both industrial and academic-this unique publication also has long-range value for agronomists and environmental scientists.