基于宽带聚焦梯度元曲面的增益增强平面透镜天线

IF 0.6 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Applied Computational Electromagnetics Society Journal Pub Date : 2021-08-06 DOI:10.47037/2020.aces.j.360605
Qiming Yu, Shaobin Liu, Zhengyu Huang, X. Kong, Huang Yuehong, Yongdiao Wen
{"title":"基于宽带聚焦梯度元曲面的增益增强平面透镜天线","authors":"Qiming Yu, Shaobin Liu, Zhengyu Huang, X. Kong, Huang Yuehong, Yongdiao Wen","doi":"10.47037/2020.aces.j.360605","DOIUrl":null,"url":null,"abstract":"A three-layered transmitting focusing gradient meta-surface (FGMS) has been proposed, which can achieve broadband gain enhancement from 8.2 GHz to 10 GHz. The element of broadband transmitting FGMS has high transmitting efficiencies that over 0.7 and achieve [0, 2π] phase range with a flat and linear trend in the operating band. The FGMS can transform the spherical waves into plane waves. Three patch antennas working at 8.2 GHz, 9.1 GHz, and 10 GHz respectively are placed the focus of broadband FGMS as the spherical-wave source to build a broadband planar lens antenna system. It achieves a simulation gain of 15.44 dBi which is 7.51dB higher than that of the bare patch antenna at 10 GHz with satisfying SLLs and beamwidths. However, it enhanced the gain of the bare\npatch antenna in a wide operating band. Finally, the FGMS and the patch antenna are fabricated and measured. The measured results are in good agreement with the simulations.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gain Enhancement Planar Lens Antenna based on Wideband Focusing Gradient Meta-surface\",\"authors\":\"Qiming Yu, Shaobin Liu, Zhengyu Huang, X. Kong, Huang Yuehong, Yongdiao Wen\",\"doi\":\"10.47037/2020.aces.j.360605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A three-layered transmitting focusing gradient meta-surface (FGMS) has been proposed, which can achieve broadband gain enhancement from 8.2 GHz to 10 GHz. The element of broadband transmitting FGMS has high transmitting efficiencies that over 0.7 and achieve [0, 2π] phase range with a flat and linear trend in the operating band. The FGMS can transform the spherical waves into plane waves. Three patch antennas working at 8.2 GHz, 9.1 GHz, and 10 GHz respectively are placed the focus of broadband FGMS as the spherical-wave source to build a broadband planar lens antenna system. It achieves a simulation gain of 15.44 dBi which is 7.51dB higher than that of the bare patch antenna at 10 GHz with satisfying SLLs and beamwidths. However, it enhanced the gain of the bare\\npatch antenna in a wide operating band. Finally, the FGMS and the patch antenna are fabricated and measured. The measured results are in good agreement with the simulations.\",\"PeriodicalId\":8207,\"journal\":{\"name\":\"Applied Computational Electromagnetics Society Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computational Electromagnetics Society Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.47037/2020.aces.j.360605\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2020.aces.j.360605","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种三层发射聚焦梯度元表面(FGMS),可实现8.2 GHz至10 GHz的宽带增益增强。宽带发射FGMS元件具有高于0.7的高发射效率,并且在工作频带内具有平坦和线性趋势的[0,2 π]相位范围。FGMS可以将球面波转化为平面波。将工作频率分别为8.2 GHz、9.1 GHz和10 GHz的3个贴片天线作为球波源置于宽带FGMS的焦点处,构建宽带平面透镜天线系统。仿真增益为15.44 dBi,比裸贴片天线在10 GHz时的仿真增益高7.51dB,具有良好的sll和波束宽度。然而,它提高了裸贴片天线在宽工作频带的增益。最后,制作了FGMS和贴片天线并进行了测量。实测结果与模拟结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gain Enhancement Planar Lens Antenna based on Wideband Focusing Gradient Meta-surface
A three-layered transmitting focusing gradient meta-surface (FGMS) has been proposed, which can achieve broadband gain enhancement from 8.2 GHz to 10 GHz. The element of broadband transmitting FGMS has high transmitting efficiencies that over 0.7 and achieve [0, 2π] phase range with a flat and linear trend in the operating band. The FGMS can transform the spherical waves into plane waves. Three patch antennas working at 8.2 GHz, 9.1 GHz, and 10 GHz respectively are placed the focus of broadband FGMS as the spherical-wave source to build a broadband planar lens antenna system. It achieves a simulation gain of 15.44 dBi which is 7.51dB higher than that of the bare patch antenna at 10 GHz with satisfying SLLs and beamwidths. However, it enhanced the gain of the bare patch antenna in a wide operating band. Finally, the FGMS and the patch antenna are fabricated and measured. The measured results are in good agreement with the simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
28.60%
发文量
75
审稿时长
9 months
期刊介绍: The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study. The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed. A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected. The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.
期刊最新文献
Electromagnetic and Thermal Analysis of a 6/4 Induction Switched Reluctance Machine for Electric Vehicle Application Synthesis of Elliptical Antenna Array using Hybrid SSWOA Algorithm Temperature Controlled Terahertz Absorbers based on Omega Resonators A Simple Interference and Power-based Direction of Arrival Measuring System for Modern Communication A Wideband, High Gain and Low Sidelobe Array Antenna for Modern ETC Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1