非线性自适应技术在船舶导航GPS定位轨迹中的应用

IF 2.4 Q2 ENGINEERING, MECHANICAL Nonlinear Engineering - Modeling and Application Pub Date : 2022-01-01 DOI:10.1515/nleng-2022-0039
H. Dong, Hui Yin, Qingjun Xu
{"title":"非线性自适应技术在船舶导航GPS定位轨迹中的应用","authors":"H. Dong, Hui Yin, Qingjun Xu","doi":"10.1515/nleng-2022-0039","DOIUrl":null,"url":null,"abstract":"Abstract This article addresses the challenges in the periodic law of high-frequency motion and effectively identifies the influence of high-frequency motion on ship dynamic positioning. The main aim of the article is to design a dynamic positioning filter by applying nonlinear adaptive technology to eliminate the disturbance to the ship’s dynamic propulsion system. This article proposes a method to control the ship’s dynamic positioning and apply nonlinear adaptive technology in the dynamic positioning control in order to obtain the ship’s state and reference coordinate system. Further, a mathematical model and a dynamic environmental model in ship dynamic positioning control are analyzed in this work. The control index model is located by the experimental data, and the control performance is improved within the allowable range. The experimental analysis revealed that if the initial position of the ship is (0, 0, 0), then the desired position is (100, 100, 0). The operating ranges of –0.6 × 107 to 0.6 × 107, –0.4 × 107 to 0.4 × 107, and –5.6 × 108 to 5.6 × 108 are used. The ranges of motion of –150 to 150, –130 to 130, and –5 to 5 are observed, respectively, along with a wind disturbance force of 8 m/s. The wave disturbance force of 1 m/s is observed along with 90° wind. It was observed from the experimentation that the ship could basically achieve a stable operation and control the environmental disturbance within the error range. The outcomes reveal that the proposed dynamic positioning model based on nonlinear adaptive technology has strong stability and accuracy.","PeriodicalId":37863,"journal":{"name":"Nonlinear Engineering - Modeling and Application","volume":"10 4","pages":"364 - 370"},"PeriodicalIF":2.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of nonlinear adaptive technology in GPS positioning trajectory of ship navigation\",\"authors\":\"H. Dong, Hui Yin, Qingjun Xu\",\"doi\":\"10.1515/nleng-2022-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article addresses the challenges in the periodic law of high-frequency motion and effectively identifies the influence of high-frequency motion on ship dynamic positioning. The main aim of the article is to design a dynamic positioning filter by applying nonlinear adaptive technology to eliminate the disturbance to the ship’s dynamic propulsion system. This article proposes a method to control the ship’s dynamic positioning and apply nonlinear adaptive technology in the dynamic positioning control in order to obtain the ship’s state and reference coordinate system. Further, a mathematical model and a dynamic environmental model in ship dynamic positioning control are analyzed in this work. The control index model is located by the experimental data, and the control performance is improved within the allowable range. The experimental analysis revealed that if the initial position of the ship is (0, 0, 0), then the desired position is (100, 100, 0). The operating ranges of –0.6 × 107 to 0.6 × 107, –0.4 × 107 to 0.4 × 107, and –5.6 × 108 to 5.6 × 108 are used. The ranges of motion of –150 to 150, –130 to 130, and –5 to 5 are observed, respectively, along with a wind disturbance force of 8 m/s. The wave disturbance force of 1 m/s is observed along with 90° wind. It was observed from the experimentation that the ship could basically achieve a stable operation and control the environmental disturbance within the error range. The outcomes reveal that the proposed dynamic positioning model based on nonlinear adaptive technology has strong stability and accuracy.\",\"PeriodicalId\":37863,\"journal\":{\"name\":\"Nonlinear Engineering - Modeling and Application\",\"volume\":\"10 4\",\"pages\":\"364 - 370\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Engineering - Modeling and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/nleng-2022-0039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Engineering - Modeling and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nleng-2022-0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

针对高频运动周期规律的挑战,有效识别了高频运动对船舶动力定位的影响。本文的主要目的是利用非线性自适应技术设计一种动态定位滤波器来消除对船舶动力推进系统的干扰。本文提出了一种控制船舶动态定位的方法,并将非线性自适应技术应用于动态定位控制中,以获取船舶的状态和参考坐标系。在此基础上,分析了船舶动态定位控制的数学模型和动态环境模型。根据实验数据确定了控制指标模型,在允许范围内提高了控制性能。实验分析表明,如果舰船初始位置为(0,0,0),则期望位置为(100,100,0),使用-0.6 × 107 ~ 0.6 × 107、-0.4 × 107 ~ 0.4 × 107和-5.6 × 108 ~ 5.6 × 108的工作范围。分别观测到-150 ~ 150、-130 ~ 130和-5 ~ 5的运动范围,风扰动力为8 m/s。在90°风向下观测到1 m/s的波浪扰动力。实验结果表明,舰船基本能实现稳定运行,并能将环境扰动控制在误差范围内。结果表明,基于非线性自适应技术的动态定位模型具有较强的稳定性和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of nonlinear adaptive technology in GPS positioning trajectory of ship navigation
Abstract This article addresses the challenges in the periodic law of high-frequency motion and effectively identifies the influence of high-frequency motion on ship dynamic positioning. The main aim of the article is to design a dynamic positioning filter by applying nonlinear adaptive technology to eliminate the disturbance to the ship’s dynamic propulsion system. This article proposes a method to control the ship’s dynamic positioning and apply nonlinear adaptive technology in the dynamic positioning control in order to obtain the ship’s state and reference coordinate system. Further, a mathematical model and a dynamic environmental model in ship dynamic positioning control are analyzed in this work. The control index model is located by the experimental data, and the control performance is improved within the allowable range. The experimental analysis revealed that if the initial position of the ship is (0, 0, 0), then the desired position is (100, 100, 0). The operating ranges of –0.6 × 107 to 0.6 × 107, –0.4 × 107 to 0.4 × 107, and –5.6 × 108 to 5.6 × 108 are used. The ranges of motion of –150 to 150, –130 to 130, and –5 to 5 are observed, respectively, along with a wind disturbance force of 8 m/s. The wave disturbance force of 1 m/s is observed along with 90° wind. It was observed from the experimentation that the ship could basically achieve a stable operation and control the environmental disturbance within the error range. The outcomes reveal that the proposed dynamic positioning model based on nonlinear adaptive technology has strong stability and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
3.60%
发文量
49
审稿时长
44 weeks
期刊介绍: The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.
期刊最新文献
Study of time-fractional delayed differential equations via new integral transform-based variation iteration technique Convolutional neural network for UAV image processing and navigation in tree plantations based on deep learning Nonlinear adaptive sliding mode control with application to quadcopters Equilibrium stability of dynamic duopoly Cournot game under heterogeneous strategies, asymmetric information, and one-way R&D spillovers A versatile dynamic noise control framework based on computer simulation and modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1