基于机器学习的ADSL铜接入网电缆故障分类

Nurul Bashirah Ghazali, Dang Fillatina Hashim, F. Che Seman, K. Isa, K. N. Ramli, Z. Abidin, S. Mustam, Mohammed Al Haek
{"title":"基于机器学习的ADSL铜接入网电缆故障分类","authors":"Nurul Bashirah Ghazali, Dang Fillatina Hashim, F. Che Seman, K. Isa, K. N. Ramli, Z. Abidin, S. Mustam, Mohammed Al Haek","doi":"10.26555/ijain.v7i3.488","DOIUrl":null,"url":null,"abstract":"Asymmetrical Digital Subscriber Line (ADSL) is the technology widely deployed worldwide, but its performance may be limited with respect to its intrinsic. The nature of the copper cable causes it to be more susceptible to signal degradation and faulty line. Common ADSL line faults are short-wired fault, open-wired fault, bridge taps, and uneven pair. However, ADSL technology is still one of the most established networks, and users in the suburban area still depend on the technology to access the internet service. This paper discussed and compared a machine learning algorithm based on Decision Trees (J48), K-Nearest Neighbor, Multi-level Perceptron, Naïve Bayes, Random Forest, and Sequential Minimal Optimization (SMO) for ADSL line impairment that affects the line operation performance concerning their percentage of accuracy. Resulting from classifications done using algorithms as mentioned above, the random forest algorithm gives the highest overall accuracy for the ADSL line impairment dataset. The best algorithm for classifying DSL line impairment is chosen based on the highest accuracy percentage. The accomplishment classification of fault type in the ADSL copper access network project may benefit the telecommunication network provider by remotely assessing the network condition rather than on-site.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"103 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cable fault classification in ADSL copper access network using machine learning\",\"authors\":\"Nurul Bashirah Ghazali, Dang Fillatina Hashim, F. Che Seman, K. Isa, K. N. Ramli, Z. Abidin, S. Mustam, Mohammed Al Haek\",\"doi\":\"10.26555/ijain.v7i3.488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Asymmetrical Digital Subscriber Line (ADSL) is the technology widely deployed worldwide, but its performance may be limited with respect to its intrinsic. The nature of the copper cable causes it to be more susceptible to signal degradation and faulty line. Common ADSL line faults are short-wired fault, open-wired fault, bridge taps, and uneven pair. However, ADSL technology is still one of the most established networks, and users in the suburban area still depend on the technology to access the internet service. This paper discussed and compared a machine learning algorithm based on Decision Trees (J48), K-Nearest Neighbor, Multi-level Perceptron, Naïve Bayes, Random Forest, and Sequential Minimal Optimization (SMO) for ADSL line impairment that affects the line operation performance concerning their percentage of accuracy. Resulting from classifications done using algorithms as mentioned above, the random forest algorithm gives the highest overall accuracy for the ADSL line impairment dataset. The best algorithm for classifying DSL line impairment is chosen based on the highest accuracy percentage. The accomplishment classification of fault type in the ADSL copper access network project may benefit the telecommunication network provider by remotely assessing the network condition rather than on-site.\",\"PeriodicalId\":52195,\"journal\":{\"name\":\"International Journal of Advances in Intelligent Informatics\",\"volume\":\"103 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Intelligent Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26555/ijain.v7i3.488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26555/ijain.v7i3.488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

非对称数字用户线路(ADSL)是一项在世界范围内广泛应用的技术,但其性能可能受到其固有特性的限制。铜电缆的性质使其更容易受到信号退化和线路故障的影响。常见的ADSL线路故障有短线故障、开线故障、桥接分接和不均匀对等。然而,ADSL技术仍然是最成熟的网络之一,郊区用户仍然依赖该技术访问互联网服务。本文讨论并比较了一种基于决策树(J48)、k近邻、多层感知器、Naïve贝叶斯、随机森林和顺序最小优化(SMO)的机器学习算法,用于影响线路操作性能的ADSL线路损伤,涉及其准确度百分比。由于使用上述算法进行分类,随机森林算法为ADSL线路损伤数据集提供了最高的总体精度。以最高的准确率为基础,选择最佳的DSL线路损伤分类算法。在ADSL铜接入网工程中,故障类型的完成分类可以通过远程评估网络状况而不是现场评估,从而使电信网络提供商受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cable fault classification in ADSL copper access network using machine learning
Asymmetrical Digital Subscriber Line (ADSL) is the technology widely deployed worldwide, but its performance may be limited with respect to its intrinsic. The nature of the copper cable causes it to be more susceptible to signal degradation and faulty line. Common ADSL line faults are short-wired fault, open-wired fault, bridge taps, and uneven pair. However, ADSL technology is still one of the most established networks, and users in the suburban area still depend on the technology to access the internet service. This paper discussed and compared a machine learning algorithm based on Decision Trees (J48), K-Nearest Neighbor, Multi-level Perceptron, Naïve Bayes, Random Forest, and Sequential Minimal Optimization (SMO) for ADSL line impairment that affects the line operation performance concerning their percentage of accuracy. Resulting from classifications done using algorithms as mentioned above, the random forest algorithm gives the highest overall accuracy for the ADSL line impairment dataset. The best algorithm for classifying DSL line impairment is chosen based on the highest accuracy percentage. The accomplishment classification of fault type in the ADSL copper access network project may benefit the telecommunication network provider by remotely assessing the network condition rather than on-site.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Advances in Intelligent Informatics
International Journal of Advances in Intelligent Informatics Computer Science-Computer Vision and Pattern Recognition
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Emergency sign language recognition from variant of convolutional neural network (CNN) and long short term memory (LSTM) models Self-supervised few-shot learning for real-time traffic sign classification Hybrid machine learning model based on feature decomposition and entropy optimization for higher accuracy flood forecasting Imputation of missing microclimate data of coffee-pine agroforestry with machine learning Scientific reference style using rule-based machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1