通用航空飞行阶段识别的机器学习方法研究

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of Aerospace Information Systems Pub Date : 2023-08-18 DOI:10.2514/1.i011246
Nicoletta Fala, G. Georgalis, Nastaran Arzamani
{"title":"通用航空飞行阶段识别的机器学习方法研究","authors":"Nicoletta Fala, G. Georgalis, Nastaran Arzamani","doi":"10.2514/1.i011246","DOIUrl":null,"url":null,"abstract":"Accurate identification of phases of flight is an essential step in analyses such as airport operation counts, fuel burn estimation, and safety studies. Past research has focused primarily on using positional data with rule-based or probabilistic-based decision-making to identify the phases of flight. Many of these efforts note that the task of correctly identifying phases of flight is challenging, often requiring extreme fine-tuning of methods. In this paper, we initially study whether combinations of dimensionality reduction of flight data records from general aviation aircraft impact clustering into the correct flight phases (climb, cruise, or descent) without any preprocessing or fine-tuning. For dimensionality reduction, we considered the low variance filter, the high correlation filter, principal component analysis, and autoencoders. We found that these dimensionality reduction algorithms do not offer any benefit for the phase identification task, as compared to feature selection that simply omits engine-specific features. For the clustering task, we considered [Formula: see text]-means and Gaussian mixture models. After performing clustering on eight test flights, we conclude that both methods are adequate at identifying the phases of flight in various general aviation flights and yield similar results.","PeriodicalId":50260,"journal":{"name":"Journal of Aerospace Information Systems","volume":"47 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Machine Learning Methods for General Aviation Flight Phase Identification\",\"authors\":\"Nicoletta Fala, G. Georgalis, Nastaran Arzamani\",\"doi\":\"10.2514/1.i011246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate identification of phases of flight is an essential step in analyses such as airport operation counts, fuel burn estimation, and safety studies. Past research has focused primarily on using positional data with rule-based or probabilistic-based decision-making to identify the phases of flight. Many of these efforts note that the task of correctly identifying phases of flight is challenging, often requiring extreme fine-tuning of methods. In this paper, we initially study whether combinations of dimensionality reduction of flight data records from general aviation aircraft impact clustering into the correct flight phases (climb, cruise, or descent) without any preprocessing or fine-tuning. For dimensionality reduction, we considered the low variance filter, the high correlation filter, principal component analysis, and autoencoders. We found that these dimensionality reduction algorithms do not offer any benefit for the phase identification task, as compared to feature selection that simply omits engine-specific features. For the clustering task, we considered [Formula: see text]-means and Gaussian mixture models. After performing clustering on eight test flights, we conclude that both methods are adequate at identifying the phases of flight in various general aviation flights and yield similar results.\",\"PeriodicalId\":50260,\"journal\":{\"name\":\"Journal of Aerospace Information Systems\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerospace Information Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.i011246\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Information Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.i011246","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

准确识别飞行阶段是机场运行计数、燃料消耗估计和安全研究等分析的重要步骤。过去的研究主要集中在使用位置数据与基于规则或基于概率的决策来识别飞行阶段。许多这些努力都指出,正确识别飞行阶段的任务具有挑战性,通常需要对方法进行极端微调。在本文中,我们初步研究了在没有任何预处理或微调的情况下,通用航空飞机飞行数据记录的降维组合是否能进入正确的飞行阶段(爬升、巡航或下降)。对于降维,我们考虑了低方差滤波器、高相关滤波器、主成分分析和自编码器。我们发现,与简单地忽略引擎特定特征的特征选择相比,这些降维算法对阶段识别任务没有任何好处。对于聚类任务,我们考虑了[公式:见文本]均值和高斯混合模型。在对8次试飞进行聚类后,我们得出结论,这两种方法都足以识别各种通用航空航班的飞行阶段,并且产生相似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on Machine Learning Methods for General Aviation Flight Phase Identification
Accurate identification of phases of flight is an essential step in analyses such as airport operation counts, fuel burn estimation, and safety studies. Past research has focused primarily on using positional data with rule-based or probabilistic-based decision-making to identify the phases of flight. Many of these efforts note that the task of correctly identifying phases of flight is challenging, often requiring extreme fine-tuning of methods. In this paper, we initially study whether combinations of dimensionality reduction of flight data records from general aviation aircraft impact clustering into the correct flight phases (climb, cruise, or descent) without any preprocessing or fine-tuning. For dimensionality reduction, we considered the low variance filter, the high correlation filter, principal component analysis, and autoencoders. We found that these dimensionality reduction algorithms do not offer any benefit for the phase identification task, as compared to feature selection that simply omits engine-specific features. For the clustering task, we considered [Formula: see text]-means and Gaussian mixture models. After performing clustering on eight test flights, we conclude that both methods are adequate at identifying the phases of flight in various general aviation flights and yield similar results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
13.30%
发文量
58
审稿时长
>12 weeks
期刊介绍: This Journal is devoted to the dissemination of original archival research papers describing new theoretical developments, novel applications, and case studies regarding advances in aerospace computing, information, and networks and communication systems that address aerospace-specific issues. Issues related to signal processing, electromagnetics, antenna theory, and the basic networking hardware transmission technologies of a network are not within the scope of this journal. Topics include aerospace systems and software engineering; verification and validation of embedded systems; the field known as ‘big data,’ data analytics, machine learning, and knowledge management for aerospace systems; human-automation interaction and systems health management for aerospace systems. Applications of autonomous systems, systems engineering principles, and safety and mission assurance are of particular interest. The Journal also features Technical Notes that discuss particular technical innovations or applications in the topics described above. Papers are also sought that rigorously review the results of recent research developments. In addition to original research papers and reviews, the journal publishes articles that review books, conferences, social media, and new educational modes applicable to the scope of the Journal.
期刊最新文献
New Type-2-Fuzzy-Logic-Based Control System for the Cessna Citation X Basic Engagement Zones Advanced Wavelet Transform-Based Automated System for Drone State Identification Using Radio-Frequency Signal Integration of the Functional Hazard Assessment Within a Model-Based Systems Engineering Framework Safe Spacecraft Inspection via Deep Reinforcement Learning and Discrete Control Barrier Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1