0.5 g/mL尿素口服液在InOrpha®中的稳定性研究

J. Bourbon, A. Dory, L. Perello, Laure Belotti, F. Reisz, G. Ubeaud‐Séquier, B. Gourieux
{"title":"0.5 g/mL尿素口服液在InOrpha®中的稳定性研究","authors":"J. Bourbon, A. Dory, L. Perello, Laure Belotti, F. Reisz, G. Ubeaud‐Séquier, B. Gourieux","doi":"10.1515/pthp-2019-0015","DOIUrl":null,"url":null,"abstract":"Abstract Background Urea is recommended in the 2nd line treatment in moderate to severe hyponatraemia induced by syndrome of inappropriate antidiuretic hormone secretion (SIADH), when water restriction is insufficient. A posology of 0.25–0.5 g/kg daily is suggested. A usual but inadequate urea oral preparation, i. e. 10 g urea powder dissolved in 100 mL water before use, was classically compounded. Therefore the pharmacy has developed a 0.5 g/mL urea oral liquid solution in InOrpha® with better organoleptic characteristics to improve treatment adherence and reduce the preparation time. The aim of this study was to determine physicochemical and microbiological stability of the urea oral liquid solution in order to establish a shelf life of the preparation. Methods The 0.5 g/mL urea solution was compounded using urea powder in a commercial suspending vehicle: Inorpha®. A validated high-performance liquid chromatographic (HPLC) method with UV detection was performed for the assay of urea. The preparations were packaged in amber glass bottles and stored at fridge (5 °C±3 °C) or at room temperature (24 °C±1 °C). The physicochemical (urea concentration, macroscopic change) and microbiological stability of the preparation was tested over 90 days. Urea concentration measurement at day 0 was considered as the reference value (100 % stability) and urea concentration in subsequent samples greater than 90 % were definite stable without macroscopic changes. Results The developed HPLC-UV method was validated in terms of linearity, specificity, accuracy and fidelity (less than 5 % for relative standard deviation and relative error). After 90 days, no microbial growth was noted and urea concentrations were always higher than 90 % of the initial concentration. Macroscopic changes were observed for the samples stored at fridge (5 °C+/− 3 °C) with massive crystallization of urea solution. Conclusions Although, all the preparations retain more than 95 % of the initial concentration after 90 days in all storage conditions, macroscopic change and pH change (more than 1 unit after 15 days at room temperature) have to be taken into account. The 0.5 g/mL urea oral liquid solution in InOrpha® remains stable for 15 days at room temperature (24 °C±1 °C) in amber glass bottles.","PeriodicalId":19802,"journal":{"name":"Pharmaceutical Technology in Hospital Pharmacy","volume":"99 1","pages":"69 - 76"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/pthp-2019-0015","citationCount":"0","resultStr":"{\"title\":\"Stability Study of 0.5 g/mL Urea Oral Solution in InOrpha®\",\"authors\":\"J. Bourbon, A. Dory, L. Perello, Laure Belotti, F. Reisz, G. Ubeaud‐Séquier, B. Gourieux\",\"doi\":\"10.1515/pthp-2019-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Background Urea is recommended in the 2nd line treatment in moderate to severe hyponatraemia induced by syndrome of inappropriate antidiuretic hormone secretion (SIADH), when water restriction is insufficient. A posology of 0.25–0.5 g/kg daily is suggested. A usual but inadequate urea oral preparation, i. e. 10 g urea powder dissolved in 100 mL water before use, was classically compounded. Therefore the pharmacy has developed a 0.5 g/mL urea oral liquid solution in InOrpha® with better organoleptic characteristics to improve treatment adherence and reduce the preparation time. The aim of this study was to determine physicochemical and microbiological stability of the urea oral liquid solution in order to establish a shelf life of the preparation. Methods The 0.5 g/mL urea solution was compounded using urea powder in a commercial suspending vehicle: Inorpha®. A validated high-performance liquid chromatographic (HPLC) method with UV detection was performed for the assay of urea. The preparations were packaged in amber glass bottles and stored at fridge (5 °C±3 °C) or at room temperature (24 °C±1 °C). The physicochemical (urea concentration, macroscopic change) and microbiological stability of the preparation was tested over 90 days. Urea concentration measurement at day 0 was considered as the reference value (100 % stability) and urea concentration in subsequent samples greater than 90 % were definite stable without macroscopic changes. Results The developed HPLC-UV method was validated in terms of linearity, specificity, accuracy and fidelity (less than 5 % for relative standard deviation and relative error). After 90 days, no microbial growth was noted and urea concentrations were always higher than 90 % of the initial concentration. Macroscopic changes were observed for the samples stored at fridge (5 °C+/− 3 °C) with massive crystallization of urea solution. Conclusions Although, all the preparations retain more than 95 % of the initial concentration after 90 days in all storage conditions, macroscopic change and pH change (more than 1 unit after 15 days at room temperature) have to be taken into account. The 0.5 g/mL urea oral liquid solution in InOrpha® remains stable for 15 days at room temperature (24 °C±1 °C) in amber glass bottles.\",\"PeriodicalId\":19802,\"journal\":{\"name\":\"Pharmaceutical Technology in Hospital Pharmacy\",\"volume\":\"99 1\",\"pages\":\"69 - 76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/pthp-2019-0015\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Technology in Hospital Pharmacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/pthp-2019-0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Technology in Hospital Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/pthp-2019-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景尿素被推荐用于中重度低钠血症的二线治疗,这些低钠血症是由不适当的抗利尿激素分泌综合征(SIADH)引起的,当限水不足时。建议每天0.25-0.5 g/kg。一种常用但不充分的尿素口服制剂,如:使用前将10克尿素粉末溶于100毫升水中,经经典配制。因此,该药房在InOrpha®中开发了一种具有更好感官特性的0.5 g/mL尿素口服液溶液,以提高治疗依从性,缩短制备时间。本研究的目的是确定尿素口服液溶液的物理化学和微生物稳定性,以确定制剂的保质期。方法将0.5 g/mL尿素溶液用尿素粉在Inorpha®商用悬浮液中复配。建立了高效液相色谱紫外检测法测定尿素的方法。用琥珀色玻璃瓶包装,冷藏(5°C±3°C)或室温(24°C±1°C)。在90 d的时间里,测试了该制剂的理化性质(尿素浓度、宏观变化)和微生物稳定性。以第0天尿素浓度测量值为参考值(100%稳定),后续样品尿素浓度大于90%时确定稳定,无宏观变化。结果所建立的HPLC-UV方法具有良好的线性度、特异性、准确度和保真度(相对标准偏差和相对误差均小于5%)。90 d后,微生物未见生长,尿素浓度始终高于初始浓度的90%。在冰箱(5°C+/−3°C)中,尿素溶液大量结晶,观察了样品的宏观变化。结论所有制剂在各种贮存条件下,90天后均保持95%以上的初始浓度,但需考虑宏观变化和pH变化(室温下15天后大于1单位)。0.5 g/mL的InOrpha®尿素口服液在室温下(24°C±1°C)在琥珀色玻璃瓶中保持稳定15天。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stability Study of 0.5 g/mL Urea Oral Solution in InOrpha®
Abstract Background Urea is recommended in the 2nd line treatment in moderate to severe hyponatraemia induced by syndrome of inappropriate antidiuretic hormone secretion (SIADH), when water restriction is insufficient. A posology of 0.25–0.5 g/kg daily is suggested. A usual but inadequate urea oral preparation, i. e. 10 g urea powder dissolved in 100 mL water before use, was classically compounded. Therefore the pharmacy has developed a 0.5 g/mL urea oral liquid solution in InOrpha® with better organoleptic characteristics to improve treatment adherence and reduce the preparation time. The aim of this study was to determine physicochemical and microbiological stability of the urea oral liquid solution in order to establish a shelf life of the preparation. Methods The 0.5 g/mL urea solution was compounded using urea powder in a commercial suspending vehicle: Inorpha®. A validated high-performance liquid chromatographic (HPLC) method with UV detection was performed for the assay of urea. The preparations were packaged in amber glass bottles and stored at fridge (5 °C±3 °C) or at room temperature (24 °C±1 °C). The physicochemical (urea concentration, macroscopic change) and microbiological stability of the preparation was tested over 90 days. Urea concentration measurement at day 0 was considered as the reference value (100 % stability) and urea concentration in subsequent samples greater than 90 % were definite stable without macroscopic changes. Results The developed HPLC-UV method was validated in terms of linearity, specificity, accuracy and fidelity (less than 5 % for relative standard deviation and relative error). After 90 days, no microbial growth was noted and urea concentrations were always higher than 90 % of the initial concentration. Macroscopic changes were observed for the samples stored at fridge (5 °C+/− 3 °C) with massive crystallization of urea solution. Conclusions Although, all the preparations retain more than 95 % of the initial concentration after 90 days in all storage conditions, macroscopic change and pH change (more than 1 unit after 15 days at room temperature) have to be taken into account. The 0.5 g/mL urea oral liquid solution in InOrpha® remains stable for 15 days at room temperature (24 °C±1 °C) in amber glass bottles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
12 weeks
期刊最新文献
Physicochemical stability of urea-containing Mitomycin C preparations in glass vials (1.0 mg/mL) and plastic syringes (2.0, 0.4, 0.2 mg/mL) Physicochemical stability of durvalumab (Imfinzi®) concentrate for solution in original vials after first opening Semi-automatic COVID-19 vaccine preparation for upscaling of vaccination: a descriptive study Assessment of the relevance of osmolality measurement as a criterion for the stability of solutions Use of a liquid chromatography-tandem mass spectrometry method to assess the concentration of epinephrine, norepinephrine, and phenylephrine stored in plastic syringes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1