{"title":"纳米孔填充生长GaAs/AlGaAs量子点中激子复合物的理论研究","authors":"M. Omri, A. Sayari, L. Sfaxi","doi":"10.1155/2021/3928308","DOIUrl":null,"url":null,"abstract":"In this work, a theoretical study of the electronic and the optical properties of a new family of strain-free GaAs/AlGaAs quantum dots (QDs) obtained by AlGaAs nanohole filling is presented. The considered model consists of solving the three-dimensional effective-mass Schrödinger equation, thus providing a complete description of the neutral and charged complex excitons’ fine structure. The QD size effect on carrier confinement energies, wave functions, and s-p splitting is studied. The direct Coulomb interaction impact on the calculated s and p states’ transition energies is investigated. The behaviour of the binding energy of neutral and charged excitons (X− and X+) and biexciton XX versus QD height is studied. The addition of the correlation effect allows to explain the nature of biexcitons often observed experimentally.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Study of Excitonic Complexes in GaAs/AlGaAs Quantum Dots Grown by Filling of Nanoholes\",\"authors\":\"M. Omri, A. Sayari, L. Sfaxi\",\"doi\":\"10.1155/2021/3928308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a theoretical study of the electronic and the optical properties of a new family of strain-free GaAs/AlGaAs quantum dots (QDs) obtained by AlGaAs nanohole filling is presented. The considered model consists of solving the three-dimensional effective-mass Schrödinger equation, thus providing a complete description of the neutral and charged complex excitons’ fine structure. The QD size effect on carrier confinement energies, wave functions, and s-p splitting is studied. The direct Coulomb interaction impact on the calculated s and p states’ transition energies is investigated. The behaviour of the binding energy of neutral and charged excitons (X− and X+) and biexciton XX versus QD height is studied. The addition of the correlation effect allows to explain the nature of biexcitons often observed experimentally.\",\"PeriodicalId\":7382,\"journal\":{\"name\":\"Advances in Condensed Matter Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/3928308\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/3928308","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Theoretical Study of Excitonic Complexes in GaAs/AlGaAs Quantum Dots Grown by Filling of Nanoholes
In this work, a theoretical study of the electronic and the optical properties of a new family of strain-free GaAs/AlGaAs quantum dots (QDs) obtained by AlGaAs nanohole filling is presented. The considered model consists of solving the three-dimensional effective-mass Schrödinger equation, thus providing a complete description of the neutral and charged complex excitons’ fine structure. The QD size effect on carrier confinement energies, wave functions, and s-p splitting is studied. The direct Coulomb interaction impact on the calculated s and p states’ transition energies is investigated. The behaviour of the binding energy of neutral and charged excitons (X− and X+) and biexciton XX versus QD height is studied. The addition of the correlation effect allows to explain the nature of biexcitons often observed experimentally.
期刊介绍:
Advances in Condensed Matter Physics publishes articles on the experimental and theoretical study of the physics of materials in solid, liquid, amorphous, and exotic states. Papers consider the quantum, classical, and statistical mechanics of materials; their structure, dynamics, and phase transitions; and their magnetic, electronic, thermal, and optical properties.
Submission of original research, and focused review articles, is welcomed from researchers from across the entire condensed matter physics community.