基于格的密码学中多项式算法的轻量级掩蔽技术

Aikata Aikata, Andrea Basso, Gaëtan Cassiers, A. Mert, Sujoy Sinha Roy
{"title":"基于格的密码学中多项式算法的轻量级掩蔽技术","authors":"Aikata Aikata, Andrea Basso, Gaëtan Cassiers, A. Mert, Sujoy Sinha Roy","doi":"10.46586/tches.v2023.i3.366-390","DOIUrl":null,"url":null,"abstract":"Lattice-based cryptography has laid the foundation of various modern-day cryptosystems that cater to several applications, including post-quantum cryptography. For structured lattice-based schemes, polynomial arithmetic is a fundamental part. In several instances, the performance optimizations come from implementing compact multipliers due to the small range of the secret polynomial coefficients. However, this optimization does not easily translate to side-channel protected implementations since masking requires secret polynomial coefficients to be distributed over a large range. In this work, we address this problem and propose two novel generalized techniques, one for the number theoretic transform (NTT) based and another for the non-NTT-based polynomial arithmetic. Both these proposals enable masked polynomial multiplication while utilizing and retaining the small secret property.For demonstration, we used the proposed technique and instantiated masked multipliers for schoolbook as well as NTT-based polynomial multiplication. Both of these can utilize the compact multipliers used in the unmasked implementations. The schoolbook multiplication requires an extra polynomial accumulation along with the two polynomial multiplications for a first-order protected implementation. However, this cost is nothing compared to the area saved by utilizing the existing cheap multiplication units. We also extensively test the side-channel resistance of the proposed design through TVLA to guarantee its first-order security.","PeriodicalId":13186,"journal":{"name":"IACR Trans. Cryptogr. Hardw. Embed. Syst.","volume":"50 3","pages":"366-390"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kavach: Lightweight masking techniques for polynomial arithmetic in lattice-based cryptography\",\"authors\":\"Aikata Aikata, Andrea Basso, Gaëtan Cassiers, A. Mert, Sujoy Sinha Roy\",\"doi\":\"10.46586/tches.v2023.i3.366-390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lattice-based cryptography has laid the foundation of various modern-day cryptosystems that cater to several applications, including post-quantum cryptography. For structured lattice-based schemes, polynomial arithmetic is a fundamental part. In several instances, the performance optimizations come from implementing compact multipliers due to the small range of the secret polynomial coefficients. However, this optimization does not easily translate to side-channel protected implementations since masking requires secret polynomial coefficients to be distributed over a large range. In this work, we address this problem and propose two novel generalized techniques, one for the number theoretic transform (NTT) based and another for the non-NTT-based polynomial arithmetic. Both these proposals enable masked polynomial multiplication while utilizing and retaining the small secret property.For demonstration, we used the proposed technique and instantiated masked multipliers for schoolbook as well as NTT-based polynomial multiplication. Both of these can utilize the compact multipliers used in the unmasked implementations. The schoolbook multiplication requires an extra polynomial accumulation along with the two polynomial multiplications for a first-order protected implementation. However, this cost is nothing compared to the area saved by utilizing the existing cheap multiplication units. We also extensively test the side-channel resistance of the proposed design through TVLA to guarantee its first-order security.\",\"PeriodicalId\":13186,\"journal\":{\"name\":\"IACR Trans. Cryptogr. Hardw. Embed. Syst.\",\"volume\":\"50 3\",\"pages\":\"366-390\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Trans. Cryptogr. Hardw. Embed. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46586/tches.v2023.i3.366-390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Trans. Cryptogr. Hardw. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46586/tches.v2023.i3.366-390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于格的密码学为各种现代密码系统奠定了基础,这些系统可以满足包括后量子密码学在内的多种应用。对于基于结构化格的格式,多项式算法是一个基础部分。在一些情况下,由于秘密多项式系数的范围很小,性能优化来自于实现紧凑乘法器。然而,这种优化并不容易转化为侧信道保护实现,因为掩蔽需要在大范围内分布秘密多项式系数。在这项工作中,我们解决了这个问题,并提出了两种新的广义技术,一种是基于数论变换(NTT)的技术,另一种是基于非NTT的多项式算法。这两种方法都在利用和保留小秘密特性的同时实现了掩模多项式乘法。为了进行演示,我们使用了所提出的技术,并实例化了教科书中的掩码乘法器以及基于ntt的多项式乘法。这两种方法都可以利用非掩码实现中使用的紧凑乘法器。对于一阶受保护的实现,教科书上的乘法需要一个额外的多项式积累以及两个多项式乘法。然而,与利用现有便宜的乘法单元节省的面积相比,这一成本微不足道。我们还通过TVLA广泛测试了所提出设计的侧信道阻力,以保证其一阶安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kavach: Lightweight masking techniques for polynomial arithmetic in lattice-based cryptography
Lattice-based cryptography has laid the foundation of various modern-day cryptosystems that cater to several applications, including post-quantum cryptography. For structured lattice-based schemes, polynomial arithmetic is a fundamental part. In several instances, the performance optimizations come from implementing compact multipliers due to the small range of the secret polynomial coefficients. However, this optimization does not easily translate to side-channel protected implementations since masking requires secret polynomial coefficients to be distributed over a large range. In this work, we address this problem and propose two novel generalized techniques, one for the number theoretic transform (NTT) based and another for the non-NTT-based polynomial arithmetic. Both these proposals enable masked polynomial multiplication while utilizing and retaining the small secret property.For demonstration, we used the proposed technique and instantiated masked multipliers for schoolbook as well as NTT-based polynomial multiplication. Both of these can utilize the compact multipliers used in the unmasked implementations. The schoolbook multiplication requires an extra polynomial accumulation along with the two polynomial multiplications for a first-order protected implementation. However, this cost is nothing compared to the area saved by utilizing the existing cheap multiplication units. We also extensively test the side-channel resistance of the proposed design through TVLA to guarantee its first-order security.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MMM: Authenticated Encryption with Minimum Secret State for Masking Don't Forget Pairing-Friendly Curves with Odd Prime Embedding Degrees LPN-based Attacks in the White-box Setting Enhancing Quality and Security of the PLL-TRNG Protecting Dilithium against Leakage Revisited Sensitivity Analysis and Improved Implementations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1