半个世纪(或更久)的细胞死亡研究:起源,现在,也许还有未来

R. Lockshin
{"title":"半个世纪(或更久)的细胞死亡研究:起源,现在,也许还有未来","authors":"R. Lockshin","doi":"10.3389/fceld.2023.1197400","DOIUrl":null,"url":null,"abstract":"The concept of biological cell death—that is, cell death that is neither accidental nor chaotic—has existed and has been obvious since at least the beginning of the 20th C, but it was noticed by other than specialists apt choices of words that caught the spirit of the time, “programmed cell death” and “apoptosis” caught the attention of a wider range of scientists. Then, by the early 1990s the recognition of at least two genes that were important to cancer and other diseases by controlling cell death (p53, Bcl-2, and Fas); recognition that cell death could be controlled by a highly conserved family of proteases; and the development of rapid and easy means of measuring cell death, led to the explosion of the field as a subject of research. Today we recognize many variations on the theme of biological cell death, but many mysteries remain. The most important of these remaining mysteries is that we recognize many of the penultimate and ultimate steps to kill cells, but it is rarely clear how and why these steps are activated. Most likely they are activated by an interaction of several metabolic steps, but we will need more high-powered analysis to determine how this interaction functions.","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"14 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-half century (or more) of study of cell death: origins, present, and perhaps future\",\"authors\":\"R. Lockshin\",\"doi\":\"10.3389/fceld.2023.1197400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of biological cell death—that is, cell death that is neither accidental nor chaotic—has existed and has been obvious since at least the beginning of the 20th C, but it was noticed by other than specialists apt choices of words that caught the spirit of the time, “programmed cell death” and “apoptosis” caught the attention of a wider range of scientists. Then, by the early 1990s the recognition of at least two genes that were important to cancer and other diseases by controlling cell death (p53, Bcl-2, and Fas); recognition that cell death could be controlled by a highly conserved family of proteases; and the development of rapid and easy means of measuring cell death, led to the explosion of the field as a subject of research. Today we recognize many variations on the theme of biological cell death, but many mysteries remain. The most important of these remaining mysteries is that we recognize many of the penultimate and ultimate steps to kill cells, but it is rarely clear how and why these steps are activated. Most likely they are activated by an interaction of several metabolic steps, but we will need more high-powered analysis to determine how this interaction functions.\",\"PeriodicalId\":73072,\"journal\":{\"name\":\"Frontiers in cell death\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in cell death\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fceld.2023.1197400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in cell death","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fceld.2023.1197400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物细胞死亡的概念——即细胞死亡既不是偶然的,也不是混乱的——至少从20世纪初就存在了,而且很明显,但除了专家之外,其他专家也注意到了这一点,他们恰当地选择了符合当时精神的词语,“程序性细胞死亡”和“细胞凋亡”引起了更广泛的科学家的注意。然后,到20世纪90年代初,人们认识到至少有两个基因通过控制细胞死亡对癌症和其他疾病很重要(p53、Bcl-2和Fas);认识到细胞死亡可以由一个高度保守的蛋白酶家族控制;而快速简便的细胞死亡测量方法的发展,导致了该领域作为一个研究课题的爆发。今天,我们认识到生物细胞死亡这一主题的许多变体,但仍有许多未解之谜。这些未解之谜中最重要的是,我们认识到杀死细胞的许多倒数第二步和最终步骤,但很少清楚这些步骤是如何以及为什么被激活的。最有可能的是,它们是由几个代谢步骤的相互作用激活的,但我们需要更高效的分析来确定这种相互作用是如何起作用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
One-half century (or more) of study of cell death: origins, present, and perhaps future
The concept of biological cell death—that is, cell death that is neither accidental nor chaotic—has existed and has been obvious since at least the beginning of the 20th C, but it was noticed by other than specialists apt choices of words that caught the spirit of the time, “programmed cell death” and “apoptosis” caught the attention of a wider range of scientists. Then, by the early 1990s the recognition of at least two genes that were important to cancer and other diseases by controlling cell death (p53, Bcl-2, and Fas); recognition that cell death could be controlled by a highly conserved family of proteases; and the development of rapid and easy means of measuring cell death, led to the explosion of the field as a subject of research. Today we recognize many variations on the theme of biological cell death, but many mysteries remain. The most important of these remaining mysteries is that we recognize many of the penultimate and ultimate steps to kill cells, but it is rarely clear how and why these steps are activated. Most likely they are activated by an interaction of several metabolic steps, but we will need more high-powered analysis to determine how this interaction functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The sea urchin embryo and the cell stress responses: new perspectives Non-canonical functions of regulated cell death machinery regulate cellular growth, invasion and the interplay between cell death modalities Regulatory signaling pathways of osteoblast autophagy in periprosthetic osteolysis Regulatory signaling pathways of osteoblast autophagy in periprosthetic osteolysis Small heat shock proteins as modulators of cell death in Plasmodium falciparum parasites and its human host
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1