Iskandar Atakhodjaev, B. Bosworth, Brian C. Grubel, M. Kossey, J. Villalba, A. Cooper, N. Dehak, A. Foster, M. Foster
{"title":"非线性硅光子puf的深度学习攻击研究","authors":"Iskandar Atakhodjaev, B. Bosworth, Brian C. Grubel, M. Kossey, J. Villalba, A. Cooper, N. Dehak, A. Foster, M. Foster","doi":"10.1364/CLEO_QELS.2018.FM1G.4","DOIUrl":null,"url":null,"abstract":"We demonstrate that nonlinear silicon photonic Physical Unclonable Functions (PUFs) are resistant to adversarial deep learning attacks. We find that this resistance is rooted in the optical nonlinearity of the silicon photonic PUF token.","PeriodicalId":6498,"journal":{"name":"2018 Conference on Lasers and Electro-Optics (CLEO)","volume":"10 2","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Investigation of Deep Learning Attacks on Nonlinear Silicon Photonic PUFs\",\"authors\":\"Iskandar Atakhodjaev, B. Bosworth, Brian C. Grubel, M. Kossey, J. Villalba, A. Cooper, N. Dehak, A. Foster, M. Foster\",\"doi\":\"10.1364/CLEO_QELS.2018.FM1G.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate that nonlinear silicon photonic Physical Unclonable Functions (PUFs) are resistant to adversarial deep learning attacks. We find that this resistance is rooted in the optical nonlinearity of the silicon photonic PUF token.\",\"PeriodicalId\":6498,\"journal\":{\"name\":\"2018 Conference on Lasers and Electro-Optics (CLEO)\",\"volume\":\"10 2\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Conference on Lasers and Electro-Optics (CLEO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/CLEO_QELS.2018.FM1G.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Lasers and Electro-Optics (CLEO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/CLEO_QELS.2018.FM1G.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of Deep Learning Attacks on Nonlinear Silicon Photonic PUFs
We demonstrate that nonlinear silicon photonic Physical Unclonable Functions (PUFs) are resistant to adversarial deep learning attacks. We find that this resistance is rooted in the optical nonlinearity of the silicon photonic PUF token.