新塞缪尔·德·尚普兰桥

M. Nader, G. Mailhot
{"title":"新塞缪尔·德·尚普兰桥","authors":"M. Nader, G. Mailhot","doi":"10.1680/jbren.21.00079","DOIUrl":null,"url":null,"abstract":"Opened to traffic on July 1, 2019, the new Samuel De Champlain Bridge represents one of the largest infrastructure projects in North America. The rapidly deteriorating condition of the original Champlain Bridge in Montreal led the Government of Canada to accelerate its replacement and ultimately awarded a contract to the Signature on the Saint Lawrence Group, in 2015, to deliver a new replacement crossing. The project was fast-tracked with a schedule of only 48-months from design to bridge opening. Due to its geographical location, this lifeline structure faces unique hazards including extreme cold temperature, ice abrasion, de-icing salt attacks, wind, vessel collision, scour, and seismic, while meeting its design life of 125 years. Sustainability and durability are also important project requirements. The 3.4-km bridge is comprised of three independent structures: the 529-meter-long, asymmetric cable-stayed bridge that features a single, 169-meter-high tower, the 762-meter-long East Approach; and the 2,044-meter-long West Approach. The Owner used a public-private partnership (P3) procurement model, and the project was delivered using the Design-Build delivery method. This paper provides an overview of this $2.4 billion CDN mega project. The design and build solutions to overcome the suite of technical and schedule challenges are discussed.","PeriodicalId":44437,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Bridge Engineering","volume":"14 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The New Samuel De Champlain Bridge\",\"authors\":\"M. Nader, G. Mailhot\",\"doi\":\"10.1680/jbren.21.00079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Opened to traffic on July 1, 2019, the new Samuel De Champlain Bridge represents one of the largest infrastructure projects in North America. The rapidly deteriorating condition of the original Champlain Bridge in Montreal led the Government of Canada to accelerate its replacement and ultimately awarded a contract to the Signature on the Saint Lawrence Group, in 2015, to deliver a new replacement crossing. The project was fast-tracked with a schedule of only 48-months from design to bridge opening. Due to its geographical location, this lifeline structure faces unique hazards including extreme cold temperature, ice abrasion, de-icing salt attacks, wind, vessel collision, scour, and seismic, while meeting its design life of 125 years. Sustainability and durability are also important project requirements. The 3.4-km bridge is comprised of three independent structures: the 529-meter-long, asymmetric cable-stayed bridge that features a single, 169-meter-high tower, the 762-meter-long East Approach; and the 2,044-meter-long West Approach. The Owner used a public-private partnership (P3) procurement model, and the project was delivered using the Design-Build delivery method. This paper provides an overview of this $2.4 billion CDN mega project. The design and build solutions to overcome the suite of technical and schedule challenges are discussed.\",\"PeriodicalId\":44437,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Bridge Engineering\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Bridge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jbren.21.00079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Bridge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jbren.21.00079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

新的塞缪尔·德·尚普兰大桥于2019年7月1日通车,是北美最大的基础设施项目之一。由于蒙特利尔原尚普兰大桥的状况迅速恶化,加拿大政府加快了对其的更换,并最终在2015年与圣劳伦斯集团签署了一份合同,交付一个新的替代桥梁。该项目从设计到大桥开通仅用了48个月的时间。由于其地理位置,该生命线结构在满足125年的设计寿命的同时,面临着极端低温、冰磨损、除冰盐侵蚀、风、船舶碰撞、冲刷和地震等独特的危险。可持续性和耐久性也是重要的项目要求。这座长3.4公里的大桥由三个独立的结构组成:长529米的非对称斜拉桥,有一个169米高的单塔,长762米的东桥;以及2,044米长的西通道。业主采用公私合作(P3)采购模式,项目采用设计-建造交付方式交付。本文概述了这个耗资24亿美元的CDN大型项目。讨论了克服技术和进度挑战的设计和构建解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The New Samuel De Champlain Bridge
Opened to traffic on July 1, 2019, the new Samuel De Champlain Bridge represents one of the largest infrastructure projects in North America. The rapidly deteriorating condition of the original Champlain Bridge in Montreal led the Government of Canada to accelerate its replacement and ultimately awarded a contract to the Signature on the Saint Lawrence Group, in 2015, to deliver a new replacement crossing. The project was fast-tracked with a schedule of only 48-months from design to bridge opening. Due to its geographical location, this lifeline structure faces unique hazards including extreme cold temperature, ice abrasion, de-icing salt attacks, wind, vessel collision, scour, and seismic, while meeting its design life of 125 years. Sustainability and durability are also important project requirements. The 3.4-km bridge is comprised of three independent structures: the 529-meter-long, asymmetric cable-stayed bridge that features a single, 169-meter-high tower, the 762-meter-long East Approach; and the 2,044-meter-long West Approach. The Owner used a public-private partnership (P3) procurement model, and the project was delivered using the Design-Build delivery method. This paper provides an overview of this $2.4 billion CDN mega project. The design and build solutions to overcome the suite of technical and schedule challenges are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
10.00%
发文量
48
期刊最新文献
Hybrid machine learning model for prediction of vertical deflection of composite bridges A control chart to evaluate the control effect of a bridge under active control Design of stone masonry bridges in European treatises: Part 1 – The geometrical configuration Extreme fjord-crossings development in the E39 coastal highway route project – a review The replacement of the Kosciuszko Bridge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1