常规耕作与有机耕作土壤中分离微生物的特性

Q4 Biochemistry, Genetics and Molecular Biology Mikrobiolohichnyi zhurnal Pub Date : 2022-11-28 DOI:10.15407/microbiolj84.02.012
I. Gumeniuk, A. Levishko, O. Demyanyuk, O. Sherstoboeva
{"title":"常规耕作与有机耕作土壤中分离微生物的特性","authors":"I. Gumeniuk, A. Levishko, O. Demyanyuk, O. Sherstoboeva","doi":"10.15407/microbiolj84.02.012","DOIUrl":null,"url":null,"abstract":"Оbjective. The article presents the results of research aimed at determining the influence of different methods of tillage on the functional diversity of the soil microbiota. Soil samples containing plant residues from agricultural plots under conventional and organic farming in the Kyiv oblast were used for the study. Methods. Analysis of soil microbiota using differential diagnostic nutrient media by serial dilutions of soil suspension was performed. To quantify the phosphate-mobilizing properties of the isolated microorganisms, the concentration of phosphorus in the solution was measured (grown in NBRIP liquid medium) and detected by the Arenius spectrophotometric method on a Ulab 102UV Spectrophotometer. Results. Th e soil of the plots under organic agrotechnology of cultivation was marked by a greater number of microorganisms of all ecological and trophic groups, except oligonitrophilic and phosphate-solubilizing bacteria. The vast majority of phosphate-transforming bacteria were isolated from the soil of agricultural plots under convection farming. The largest number of cellulose-degrading isolates was isolated from the soil under organic farming plots. Five isolates have the widest range of agronomically useful properties, in particular, the ability to mobilize organic and inorganic phosphates and cellulosolytic activity: 6b, 13b, 18b, 19b, and 8m. After incubation of the isolates on an NBRIP medium at 28°C and 200 rpm for 72 hr, special analyzes for dissolved phosphorus content and pH level in the culture fluid were performed. Isolate 8m selected from chornozem (black soil) under convection agriculture and classified by us as Trichoderma sp. exhibited the highest phosphate-mobilizing activity. The vast majority of bacteria capable of phosphate transformation were isolated from the soil of agricultural areas affected by convection agriculture; and isolates capable of dissolving cellulose — from the soil of organic farming. Conclusions. The initial identification of certain isolates allowed us to classify them as Bacillus and Trichoderma. These isolates are important for further research with the prospect of creating a complex biological preparation with fungicidal properties and the ability to mobilize organic and inorganic phosphorus compounds.","PeriodicalId":18628,"journal":{"name":"Mikrobiolohichnyi zhurnal","volume":"73 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of Microorganisms Isolated from Soils under Conventional and Organic Farming\",\"authors\":\"I. Gumeniuk, A. Levishko, O. Demyanyuk, O. Sherstoboeva\",\"doi\":\"10.15407/microbiolj84.02.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Оbjective. The article presents the results of research aimed at determining the influence of different methods of tillage on the functional diversity of the soil microbiota. Soil samples containing plant residues from agricultural plots under conventional and organic farming in the Kyiv oblast were used for the study. Methods. Analysis of soil microbiota using differential diagnostic nutrient media by serial dilutions of soil suspension was performed. To quantify the phosphate-mobilizing properties of the isolated microorganisms, the concentration of phosphorus in the solution was measured (grown in NBRIP liquid medium) and detected by the Arenius spectrophotometric method on a Ulab 102UV Spectrophotometer. Results. Th e soil of the plots under organic agrotechnology of cultivation was marked by a greater number of microorganisms of all ecological and trophic groups, except oligonitrophilic and phosphate-solubilizing bacteria. The vast majority of phosphate-transforming bacteria were isolated from the soil of agricultural plots under convection farming. The largest number of cellulose-degrading isolates was isolated from the soil under organic farming plots. Five isolates have the widest range of agronomically useful properties, in particular, the ability to mobilize organic and inorganic phosphates and cellulosolytic activity: 6b, 13b, 18b, 19b, and 8m. After incubation of the isolates on an NBRIP medium at 28°C and 200 rpm for 72 hr, special analyzes for dissolved phosphorus content and pH level in the culture fluid were performed. Isolate 8m selected from chornozem (black soil) under convection agriculture and classified by us as Trichoderma sp. exhibited the highest phosphate-mobilizing activity. The vast majority of bacteria capable of phosphate transformation were isolated from the soil of agricultural areas affected by convection agriculture; and isolates capable of dissolving cellulose — from the soil of organic farming. Conclusions. The initial identification of certain isolates allowed us to classify them as Bacillus and Trichoderma. These isolates are important for further research with the prospect of creating a complex biological preparation with fungicidal properties and the ability to mobilize organic and inorganic phosphorus compounds.\",\"PeriodicalId\":18628,\"journal\":{\"name\":\"Mikrobiolohichnyi zhurnal\",\"volume\":\"73 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mikrobiolohichnyi zhurnal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/microbiolj84.02.012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mikrobiolohichnyi zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/microbiolj84.02.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

Оbjective。本文介绍了旨在确定不同耕作方式对土壤微生物群功能多样性影响的研究结果。研究使用了基辅州传统农业和有机农业中含有植物残留物的土壤样本。方法。通过对土壤悬浮液进行连续稀释,采用鉴别诊断营养培养基对土壤微生物群进行了分析。为了量化分离微生物的磷酸盐动员特性,测定了溶液中磷的浓度(在NBRIP液体培养基中培养),并在Ulab 102UV分光光度计上用Arenius分光光度法检测。结果。有机农业技术耕作的样地土壤中除寡氮菌和增磷菌外,所有生态和营养类群的微生物数量都较多。绝大多数转化磷酸盐的细菌是从对流耕作的农田土壤中分离出来的。从有机耕作地块土壤中分离出的纤维素降解菌株数量最多。5个分离株具有最广泛的农艺有用特性,特别是调动有机和无机磷酸盐的能力和纤维素水解活性:6b, 13b, 18b, 19b和8m。分离株在NBRIP培养基上28°C和200 rpm孵育72小时后,对培养液中的溶解磷含量和pH值进行特殊分析。在对流农业条件下,从黑土土壤中分离出8m的木霉(Trichoderma sp.),其磷素动员活性最高。绝大多数能转化磷酸盐的细菌是从受对流农业影响的农业区土壤中分离出来的;从有机农业的土壤中分离出能够溶解纤维素的细菌。结论。对某些分离株的初步鉴定使我们能够将它们分类为芽孢杆菌和木霉。这些分离物对于进一步研究具有重要意义,具有创造具有杀真菌特性和调动有机和无机磷化合物能力的复杂生物制剂的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Properties of Microorganisms Isolated from Soils under Conventional and Organic Farming
Оbjective. The article presents the results of research aimed at determining the influence of different methods of tillage on the functional diversity of the soil microbiota. Soil samples containing plant residues from agricultural plots under conventional and organic farming in the Kyiv oblast were used for the study. Methods. Analysis of soil microbiota using differential diagnostic nutrient media by serial dilutions of soil suspension was performed. To quantify the phosphate-mobilizing properties of the isolated microorganisms, the concentration of phosphorus in the solution was measured (grown in NBRIP liquid medium) and detected by the Arenius spectrophotometric method on a Ulab 102UV Spectrophotometer. Results. Th e soil of the plots under organic agrotechnology of cultivation was marked by a greater number of microorganisms of all ecological and trophic groups, except oligonitrophilic and phosphate-solubilizing bacteria. The vast majority of phosphate-transforming bacteria were isolated from the soil of agricultural plots under convection farming. The largest number of cellulose-degrading isolates was isolated from the soil under organic farming plots. Five isolates have the widest range of agronomically useful properties, in particular, the ability to mobilize organic and inorganic phosphates and cellulosolytic activity: 6b, 13b, 18b, 19b, and 8m. After incubation of the isolates on an NBRIP medium at 28°C and 200 rpm for 72 hr, special analyzes for dissolved phosphorus content and pH level in the culture fluid were performed. Isolate 8m selected from chornozem (black soil) under convection agriculture and classified by us as Trichoderma sp. exhibited the highest phosphate-mobilizing activity. The vast majority of bacteria capable of phosphate transformation were isolated from the soil of agricultural areas affected by convection agriculture; and isolates capable of dissolving cellulose — from the soil of organic farming. Conclusions. The initial identification of certain isolates allowed us to classify them as Bacillus and Trichoderma. These isolates are important for further research with the prospect of creating a complex biological preparation with fungicidal properties and the ability to mobilize organic and inorganic phosphorus compounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mikrobiolohichnyi zhurnal
Mikrobiolohichnyi zhurnal Medicine-Microbiology (medical)
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
Гуанідінійвмісний олігомер як інгібітор мікробної корозії металу Xanthomonas fuscans subsp. fuscans — a Pathogen of Small Brown Spot of Legumes Роль бактерій як основи пелагічних харчових ланцюгів в ультраоліготрофних північних патагонських озерах: міні-огляд Phenotypic and Genotypic Criteria for the Screening of Highly Active S-Type Pyocins Pseudomonas aeruginosa Producers Характеристика генів інтегронів клінічних ізолятів Pseudomonas aeruginosa, які реалізують резистентність до антибіотиків та біоплівкоутворення цими штамами
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1