{"title":"海上视频监控中微光图像增强的粗到细亮度估计","authors":"Meifang Yang, Xin Nie, R. W. Liu","doi":"10.1109/ITSC.2019.8917151","DOIUrl":null,"url":null,"abstract":"Captured images in maritime video surveillance under non-uniform illumination conditions easily suffer from low contrast and details loss. The low-quality images may significantly result in negative effects in practical applications, e.g., target detection, recognition, classification and tracking, etc. Increasing attention has recently been paid to improve the quality of low-light images via computer vision techniques. In this paper, we propose to establish a two-step luminance estimation framework to enhance low-light images. In particular, the coarse luminance is firstly estimated using traditional Max-RGB which extracts the highest pixel values in each color channel. The refined luminance is obtained by introducing a weighted variational model which has the capacities of structure-preserving and texture-smoothing. Based on the estimated well-constructed luminance, the enhanced low-light images are obtained by combining Retinex model with its extended version. The image quality is further improved through a BM3D-based denoising approach. Experimental results on both synthetic and realistic low-light images have demonstrated the satisfactory imaging performance in terms of quantitative and qualitative evaluations.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"42 4","pages":"299-304"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Coarse-to-Fine Luminance Estimation for Low-Light Image Enhancement in Maritime Video Surveillance\",\"authors\":\"Meifang Yang, Xin Nie, R. W. Liu\",\"doi\":\"10.1109/ITSC.2019.8917151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Captured images in maritime video surveillance under non-uniform illumination conditions easily suffer from low contrast and details loss. The low-quality images may significantly result in negative effects in practical applications, e.g., target detection, recognition, classification and tracking, etc. Increasing attention has recently been paid to improve the quality of low-light images via computer vision techniques. In this paper, we propose to establish a two-step luminance estimation framework to enhance low-light images. In particular, the coarse luminance is firstly estimated using traditional Max-RGB which extracts the highest pixel values in each color channel. The refined luminance is obtained by introducing a weighted variational model which has the capacities of structure-preserving and texture-smoothing. Based on the estimated well-constructed luminance, the enhanced low-light images are obtained by combining Retinex model with its extended version. The image quality is further improved through a BM3D-based denoising approach. Experimental results on both synthetic and realistic low-light images have demonstrated the satisfactory imaging performance in terms of quantitative and qualitative evaluations.\",\"PeriodicalId\":6717,\"journal\":{\"name\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"volume\":\"42 4\",\"pages\":\"299-304\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2019.8917151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coarse-to-Fine Luminance Estimation for Low-Light Image Enhancement in Maritime Video Surveillance
Captured images in maritime video surveillance under non-uniform illumination conditions easily suffer from low contrast and details loss. The low-quality images may significantly result in negative effects in practical applications, e.g., target detection, recognition, classification and tracking, etc. Increasing attention has recently been paid to improve the quality of low-light images via computer vision techniques. In this paper, we propose to establish a two-step luminance estimation framework to enhance low-light images. In particular, the coarse luminance is firstly estimated using traditional Max-RGB which extracts the highest pixel values in each color channel. The refined luminance is obtained by introducing a weighted variational model which has the capacities of structure-preserving and texture-smoothing. Based on the estimated well-constructed luminance, the enhanced low-light images are obtained by combining Retinex model with its extended version. The image quality is further improved through a BM3D-based denoising approach. Experimental results on both synthetic and realistic low-light images have demonstrated the satisfactory imaging performance in terms of quantitative and qualitative evaluations.