Lukas Rauter, Johanna Zikulnig, Muhammad-Hassan Malik, S. Khan, L. Faller, H. Zangl, J. Kosel
{"title":"低成本密封方法的评估,以保护可持续性印刷温度传感器不因紫外线照射而退化","authors":"Lukas Rauter, Johanna Zikulnig, Muhammad-Hassan Malik, S. Khan, L. Faller, H. Zangl, J. Kosel","doi":"10.1109/SENSORS47087.2021.9639805","DOIUrl":null,"url":null,"abstract":"The performances of different protective sealing strategies (Ethylene Vinyl Acetate, Polyimide, Polyolefins and PDMS) for inkjet-printed resistive Ag-temperature sensors on low-cost uncoated paper substrate were evaluated by means of exposure to pulsed light irradiation in the spectral range close to sunlight. The paper-based temperature sensors show excellent linearity in a temperature range between 0°C and 150°C. When being exposed to pulsed light irradiation, the EVA and PI coated sensors show the best performance, no degradation of the conductivity could be observed after 300 pulses at an energy density of 1.625 J/cm2 per light pulse.","PeriodicalId":6775,"journal":{"name":"2021 IEEE Sensors","volume":"6 5","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of low cost sealing methods to protect sustainable printed temperature sensors against degradation due to UV irradiation\",\"authors\":\"Lukas Rauter, Johanna Zikulnig, Muhammad-Hassan Malik, S. Khan, L. Faller, H. Zangl, J. Kosel\",\"doi\":\"10.1109/SENSORS47087.2021.9639805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performances of different protective sealing strategies (Ethylene Vinyl Acetate, Polyimide, Polyolefins and PDMS) for inkjet-printed resistive Ag-temperature sensors on low-cost uncoated paper substrate were evaluated by means of exposure to pulsed light irradiation in the spectral range close to sunlight. The paper-based temperature sensors show excellent linearity in a temperature range between 0°C and 150°C. When being exposed to pulsed light irradiation, the EVA and PI coated sensors show the best performance, no degradation of the conductivity could be observed after 300 pulses at an energy density of 1.625 J/cm2 per light pulse.\",\"PeriodicalId\":6775,\"journal\":{\"name\":\"2021 IEEE Sensors\",\"volume\":\"6 5\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS47087.2021.9639805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47087.2021.9639805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of low cost sealing methods to protect sustainable printed temperature sensors against degradation due to UV irradiation
The performances of different protective sealing strategies (Ethylene Vinyl Acetate, Polyimide, Polyolefins and PDMS) for inkjet-printed resistive Ag-temperature sensors on low-cost uncoated paper substrate were evaluated by means of exposure to pulsed light irradiation in the spectral range close to sunlight. The paper-based temperature sensors show excellent linearity in a temperature range between 0°C and 150°C. When being exposed to pulsed light irradiation, the EVA and PI coated sensors show the best performance, no degradation of the conductivity could be observed after 300 pulses at an energy density of 1.625 J/cm2 per light pulse.