基于第一性原理的金属纳米结构热输运分析:尺寸效应和Wiedemann-Franz定律

Yue Hu, Shouhang Li, Hua Bao
{"title":"基于第一性原理的金属纳米结构热输运分析:尺寸效应和Wiedemann-Franz定律","authors":"Yue Hu, Shouhang Li, Hua Bao","doi":"10.1103/PHYSREVB.103.104301","DOIUrl":null,"url":null,"abstract":"Metallic nanostructures (the nanofilms and nanowires) are widely used in electronic devices, and their thermal transport properties are crucial for heat dissipation. However, there are still gaps in understanding thermal transport in metallic nanostructures, especially regarding the size effect and validity of the Wiedemann-Franz law. In this work, we perform mode-by-mode first-principles calculations combining the Boltzmann transport equation to understand thermal transport in metallic nanostructures. We take the gold (Au) and tungsten (W) nanostructures as prototypes. It is found that when the size of nanostructures is on the order of several tens of nanometers, the electronic/phonon thermal conductivity is smaller than the bulk value and decreases with size. The phonon contribution increases in nanostructures for those metals with small bulk phonon thermal conductivity (like Au), while the phonon contribution may increase or be suppressed in nanostructures for those metals with large bulk phonon thermal conductivity (like W). By assuming that the grain boundary does not induce inelastic electron-phonon scattering, the Wiedemann-Franz law works well in both Au and W nanostructures if the Lorentz ratio is estimated using electronic thermal conductivity. The Wiedemann-Franz law also works well in Au nanostructures when the Lorentz ratio is estimated by total thermal conductivity.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"First-principles based analysis of thermal transport in metallic nanostructures: Size effect and Wiedemann-Franz law\",\"authors\":\"Yue Hu, Shouhang Li, Hua Bao\",\"doi\":\"10.1103/PHYSREVB.103.104301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metallic nanostructures (the nanofilms and nanowires) are widely used in electronic devices, and their thermal transport properties are crucial for heat dissipation. However, there are still gaps in understanding thermal transport in metallic nanostructures, especially regarding the size effect and validity of the Wiedemann-Franz law. In this work, we perform mode-by-mode first-principles calculations combining the Boltzmann transport equation to understand thermal transport in metallic nanostructures. We take the gold (Au) and tungsten (W) nanostructures as prototypes. It is found that when the size of nanostructures is on the order of several tens of nanometers, the electronic/phonon thermal conductivity is smaller than the bulk value and decreases with size. The phonon contribution increases in nanostructures for those metals with small bulk phonon thermal conductivity (like Au), while the phonon contribution may increase or be suppressed in nanostructures for those metals with large bulk phonon thermal conductivity (like W). By assuming that the grain boundary does not induce inelastic electron-phonon scattering, the Wiedemann-Franz law works well in both Au and W nanostructures if the Lorentz ratio is estimated using electronic thermal conductivity. The Wiedemann-Franz law also works well in Au nanostructures when the Lorentz ratio is estimated by total thermal conductivity.\",\"PeriodicalId\":8465,\"journal\":{\"name\":\"arXiv: Mesoscale and Nanoscale Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mesoscale and Nanoscale Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVB.103.104301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.103.104301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

金属纳米结构(纳米膜和纳米线)广泛应用于电子器件中,其热输运特性对其散热至关重要。然而,在理解金属纳米结构中的热输运方面仍然存在差距,特别是在尺寸效应和Wiedemann-Franz定律的有效性方面。在这项工作中,我们结合玻尔兹曼输运方程进行逐模第一性原理计算来理解金属纳米结构中的热输运。我们以金(Au)和钨(W)纳米结构为原型。研究发现,当纳米结构的尺寸在几十纳米量级时,电子/声子导热系数小于体积值,并随着尺寸的增大而减小。对于体积声子热导率小的金属(如Au),声子在纳米结构中的贡献增加,而对于体积声子热导率大的金属(如W),声子的贡献可能会增加或抑制。如果使用电子导热系数来估计洛伦兹比,则Wiedemann-Franz定律在Au和W纳米结构中都适用。当洛伦兹比由总热导率估算时,Wiedemann-Franz定律也适用于金纳米结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
First-principles based analysis of thermal transport in metallic nanostructures: Size effect and Wiedemann-Franz law
Metallic nanostructures (the nanofilms and nanowires) are widely used in electronic devices, and their thermal transport properties are crucial for heat dissipation. However, there are still gaps in understanding thermal transport in metallic nanostructures, especially regarding the size effect and validity of the Wiedemann-Franz law. In this work, we perform mode-by-mode first-principles calculations combining the Boltzmann transport equation to understand thermal transport in metallic nanostructures. We take the gold (Au) and tungsten (W) nanostructures as prototypes. It is found that when the size of nanostructures is on the order of several tens of nanometers, the electronic/phonon thermal conductivity is smaller than the bulk value and decreases with size. The phonon contribution increases in nanostructures for those metals with small bulk phonon thermal conductivity (like Au), while the phonon contribution may increase or be suppressed in nanostructures for those metals with large bulk phonon thermal conductivity (like W). By assuming that the grain boundary does not induce inelastic electron-phonon scattering, the Wiedemann-Franz law works well in both Au and W nanostructures if the Lorentz ratio is estimated using electronic thermal conductivity. The Wiedemann-Franz law also works well in Au nanostructures when the Lorentz ratio is estimated by total thermal conductivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A driven fractal network: Possible route to efficient thermoelectric application Double Electron Spin Resonance of Engineered Atomic Structures on a Surface Reconfigurable Training, Vortex Writing and Spin-Wave Fingerprinting in an Artificial Spin-Vortex Ice Data mining, dashboards and statistics: a powerful framework for the chemical design of molecular nanomagnets Observation of electrically tunable Feshbach resonances in twisted bilayer semiconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1