使用深度学习的金融时间序列股票价格预测

M. Goyal
{"title":"使用深度学习的金融时间序列股票价格预测","authors":"M. Goyal","doi":"10.1109/IEMCON51383.2020.9284879","DOIUrl":null,"url":null,"abstract":"Several research studies have been devoted for the last two decades to make estimates on or to forecast stock prices. Accurate stock prediction movement is still an open question for many companies and financial organizations. This article analyses the stock market prediction using deep learning model. The empirical results reveal the superiority of the LSTM recurrent deep learning model over Feed forward neural network and time series ARIMA model in terms four prediction metrics i.e. mean square error, root mean square error, mean average error and mean average percent error.","PeriodicalId":6871,"journal":{"name":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"82 9","pages":"0378-0383"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Financial Time Series Stock Price Prediction using Deep Learning\",\"authors\":\"M. Goyal\",\"doi\":\"10.1109/IEMCON51383.2020.9284879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several research studies have been devoted for the last two decades to make estimates on or to forecast stock prices. Accurate stock prediction movement is still an open question for many companies and financial organizations. This article analyses the stock market prediction using deep learning model. The empirical results reveal the superiority of the LSTM recurrent deep learning model over Feed forward neural network and time series ARIMA model in terms four prediction metrics i.e. mean square error, root mean square error, mean average error and mean average percent error.\",\"PeriodicalId\":6871,\"journal\":{\"name\":\"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"volume\":\"82 9\",\"pages\":\"0378-0383\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMCON51383.2020.9284879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMCON51383.2020.9284879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在过去的二十年里,有几项研究致力于对股票价格进行估计或预测。对许多公司和金融机构来说,准确的股票预测走势仍然是一个悬而未决的问题。本文利用深度学习模型对股票市场进行预测分析。实证结果表明,LSTM循环深度学习模型在均方误差、均方根误差、平均误差和平均百分比误差四个预测指标上优于前馈神经网络和时间序列ARIMA模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Financial Time Series Stock Price Prediction using Deep Learning
Several research studies have been devoted for the last two decades to make estimates on or to forecast stock prices. Accurate stock prediction movement is still an open question for many companies and financial organizations. This article analyses the stock market prediction using deep learning model. The empirical results reveal the superiority of the LSTM recurrent deep learning model over Feed forward neural network and time series ARIMA model in terms four prediction metrics i.e. mean square error, root mean square error, mean average error and mean average percent error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Financial Time Series Stock Price Prediction using Deep Learning Development of a Low-cost LoRa based SCADA system for Monitoring and Supervisory Control of Small Renewable Energy Generation Systems A Systematic Literature Review in Causal Association Rules Mining Distance-Based Anomaly Detection for Industrial Surfaces Using Triplet Networks Analysis of Requirements for Autonomous Driving Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1