介孔二氧化硅纳米颗粒研究进展

Asad Mehmood, H. Ghafar, Samiya Yaqoob, Umar Farooq Gohar, B. Ahmad
{"title":"介孔二氧化硅纳米颗粒研究进展","authors":"Asad Mehmood, H. Ghafar, Samiya Yaqoob, Umar Farooq Gohar, B. Ahmad","doi":"10.4172/2329-6631.1000174","DOIUrl":null,"url":null,"abstract":"One of the greatest challenges in the field of medicine is the effective and efficient drug delivery to the defected cells or tumor cells with minimal toxic side effects. Due to lacking properties like specification and solubility of drug molecule, patient requires high doses of the drug to attain the desired therapeutic effect for the disease treatment. To overcome this problem various drug carriers are available in the pharmaceutical field, which help in delivering the therapeutic drug/ gene to the target site. For this purpose, mesoporous silica nanoparticles (MSNs) are found to be biocompatible, chemically and thermally stable nanoparticles. Their unique structural properties facilitate the loading of drug/gene and subsequent controlled delivery of drug to the target site. During recent years research on MSNs has been extensively increase. Since 2001, when MCM-41 was first proposed and later on SBA-15 and MCM-48 as drug carrier for controlled delivery system. Morphological characteristics like pore size, pore volume, particle size, surface area, pH and loading capacity of drug are widely effects the MSNs, when altered. Meanwhile, functionalization of MSNs using organic and inorganic group elaborates the delivery of drug to targeted site. This review article also deals with the recent research on synthesis methods of MSNs and their applications in the field of medicine, imaging, diagnosis, cellular uptake, target drug delivery, cell tracing and bio-sensing.","PeriodicalId":15589,"journal":{"name":"Journal of Developing Drugs","volume":"49 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":"{\"title\":\"Mesoporous Silica Nanoparticles: A Review\",\"authors\":\"Asad Mehmood, H. Ghafar, Samiya Yaqoob, Umar Farooq Gohar, B. Ahmad\",\"doi\":\"10.4172/2329-6631.1000174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the greatest challenges in the field of medicine is the effective and efficient drug delivery to the defected cells or tumor cells with minimal toxic side effects. Due to lacking properties like specification and solubility of drug molecule, patient requires high doses of the drug to attain the desired therapeutic effect for the disease treatment. To overcome this problem various drug carriers are available in the pharmaceutical field, which help in delivering the therapeutic drug/ gene to the target site. For this purpose, mesoporous silica nanoparticles (MSNs) are found to be biocompatible, chemically and thermally stable nanoparticles. Their unique structural properties facilitate the loading of drug/gene and subsequent controlled delivery of drug to the target site. During recent years research on MSNs has been extensively increase. Since 2001, when MCM-41 was first proposed and later on SBA-15 and MCM-48 as drug carrier for controlled delivery system. Morphological characteristics like pore size, pore volume, particle size, surface area, pH and loading capacity of drug are widely effects the MSNs, when altered. Meanwhile, functionalization of MSNs using organic and inorganic group elaborates the delivery of drug to targeted site. This review article also deals with the recent research on synthesis methods of MSNs and their applications in the field of medicine, imaging, diagnosis, cellular uptake, target drug delivery, cell tracing and bio-sensing.\",\"PeriodicalId\":15589,\"journal\":{\"name\":\"Journal of Developing Drugs\",\"volume\":\"49 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"94\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Developing Drugs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2329-6631.1000174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developing Drugs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2329-6631.1000174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

摘要

如何以最小的毒副作用将药物有效、高效地输送到有缺陷的细胞或肿瘤细胞,是医学领域面临的最大挑战之一。由于缺乏药物分子的规格和溶解度等特性,患者需要高剂量的药物才能达到所需的治疗效果。为了克服这一问题,制药领域出现了各种各样的药物载体,它们有助于将治疗药物/基因运送到靶点。为此,介孔二氧化硅纳米颗粒(MSNs)被发现具有生物相容性、化学稳定性和热稳定性。它们独特的结构特性有助于药物/基因的装载和随后的药物控制递送到靶点。近年来,对微微网络的研究得到了广泛的发展。自2001年以来,MCM-41首次被提出,后来SBA-15和MCM-48作为受控给药系统的药物载体。孔径、孔体积、粒径、比表面积、pH值和药物负载能力等形态特征在改变后会对微孔微球产生广泛的影响。同时,利用有机和无机基团对msn进行功能化,阐述了药物向目标部位的传递。本文综述了近年来纳米微球的合成方法及其在医学、影像、诊断、细胞摄取、靶向药物传递、细胞示踪和生物传感等领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mesoporous Silica Nanoparticles: A Review
One of the greatest challenges in the field of medicine is the effective and efficient drug delivery to the defected cells or tumor cells with minimal toxic side effects. Due to lacking properties like specification and solubility of drug molecule, patient requires high doses of the drug to attain the desired therapeutic effect for the disease treatment. To overcome this problem various drug carriers are available in the pharmaceutical field, which help in delivering the therapeutic drug/ gene to the target site. For this purpose, mesoporous silica nanoparticles (MSNs) are found to be biocompatible, chemically and thermally stable nanoparticles. Their unique structural properties facilitate the loading of drug/gene and subsequent controlled delivery of drug to the target site. During recent years research on MSNs has been extensively increase. Since 2001, when MCM-41 was first proposed and later on SBA-15 and MCM-48 as drug carrier for controlled delivery system. Morphological characteristics like pore size, pore volume, particle size, surface area, pH and loading capacity of drug are widely effects the MSNs, when altered. Meanwhile, functionalization of MSNs using organic and inorganic group elaborates the delivery of drug to targeted site. This review article also deals with the recent research on synthesis methods of MSNs and their applications in the field of medicine, imaging, diagnosis, cellular uptake, target drug delivery, cell tracing and bio-sensing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Dissolving Tablets: A Comfortable Dosage Form for Geriatrics,Pediatrics, Bed Ridden Patients Is Vitamin D more Important than the Medicine? A Short Note Acknowledgment on Developing Drugs The Efficacy of Treating Pulmonary Fibrosis and Pulmonary Function Injury in COVID-19 with Fuzheng Huayu Tablets: Study Protocol for a Multicenter Randomized Controlled Trial Formulation of Oral films for the Treatment of Cough
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1