基于人工智能的智能传感和AR步态康复评估

Inf. Comput. Pub Date : 2023-06-22 DOI:10.3390/info14070355
João Monge, Gonçalo Ribeiro, A. Raimundo, O. Postolache, Joel Santos
{"title":"基于人工智能的智能传感和AR步态康复评估","authors":"João Monge, Gonçalo Ribeiro, A. Raimundo, O. Postolache, Joel Santos","doi":"10.3390/info14070355","DOIUrl":null,"url":null,"abstract":"Health monitoring is crucial in hospitals and rehabilitation centers. Challenges can affect the reliability and accuracy of health data. Human error, patient compliance concerns, time, money, technology, and environmental factors might cause these issues. In order to improve patient care, healthcare providers must address these challenges. We propose a non-intrusive smart sensing system that uses a SensFloor smart carpet and an inertial measurement unit (IMU) wearable sensor on the user’s back to monitor position and gait characteristics. Furthermore, we implemented machine learning (ML) algorithms to analyze the data collected from the SensFloor and IMU sensors. The system generates real-time data that are stored in the cloud and are accessible to physical therapists and patients. Additionally, the system’s real-time dashboards provide a comprehensive analysis of the user’s gait and balance, enabling personalized training plans with tailored exercises and better rehabilitation outcomes. Using non-invasive smart sensing technology, our proposed solution enables healthcare facilities to monitor patients’ health and enhance their physical rehabilitation plans.","PeriodicalId":13622,"journal":{"name":"Inf. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AI-Based Smart Sensing and AR for Gait Rehabilitation Assessment\",\"authors\":\"João Monge, Gonçalo Ribeiro, A. Raimundo, O. Postolache, Joel Santos\",\"doi\":\"10.3390/info14070355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Health monitoring is crucial in hospitals and rehabilitation centers. Challenges can affect the reliability and accuracy of health data. Human error, patient compliance concerns, time, money, technology, and environmental factors might cause these issues. In order to improve patient care, healthcare providers must address these challenges. We propose a non-intrusive smart sensing system that uses a SensFloor smart carpet and an inertial measurement unit (IMU) wearable sensor on the user’s back to monitor position and gait characteristics. Furthermore, we implemented machine learning (ML) algorithms to analyze the data collected from the SensFloor and IMU sensors. The system generates real-time data that are stored in the cloud and are accessible to physical therapists and patients. Additionally, the system’s real-time dashboards provide a comprehensive analysis of the user’s gait and balance, enabling personalized training plans with tailored exercises and better rehabilitation outcomes. Using non-invasive smart sensing technology, our proposed solution enables healthcare facilities to monitor patients’ health and enhance their physical rehabilitation plans.\",\"PeriodicalId\":13622,\"journal\":{\"name\":\"Inf. Comput.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/info14070355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14070355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

健康监测在医院和康复中心至关重要。挑战可能影响健康数据的可靠性和准确性。人为错误、患者依从性问题、时间、金钱、技术和环境因素都可能导致这些问题。为了改善患者护理,医疗保健提供者必须应对这些挑战。我们提出了一种非侵入式智能传感系统,该系统使用SensFloor智能地毯和用户背部的惯性测量单元(IMU)可穿戴传感器来监测位置和步态特征。此外,我们实现了机器学习(ML)算法来分析从SensFloor和IMU传感器收集的数据。该系统生成的实时数据存储在云端,物理治疗师和患者可以访问这些数据。此外,该系统的实时仪表板提供对用户步态和平衡的全面分析,从而实现个性化训练计划,提供量身定制的练习和更好的康复效果。我们提出的解决方案使用非侵入式智能传感技术,使医疗机构能够监测患者的健康状况,并改善他们的身体康复计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI-Based Smart Sensing and AR for Gait Rehabilitation Assessment
Health monitoring is crucial in hospitals and rehabilitation centers. Challenges can affect the reliability and accuracy of health data. Human error, patient compliance concerns, time, money, technology, and environmental factors might cause these issues. In order to improve patient care, healthcare providers must address these challenges. We propose a non-intrusive smart sensing system that uses a SensFloor smart carpet and an inertial measurement unit (IMU) wearable sensor on the user’s back to monitor position and gait characteristics. Furthermore, we implemented machine learning (ML) algorithms to analyze the data collected from the SensFloor and IMU sensors. The system generates real-time data that are stored in the cloud and are accessible to physical therapists and patients. Additionally, the system’s real-time dashboards provide a comprehensive analysis of the user’s gait and balance, enabling personalized training plans with tailored exercises and better rehabilitation outcomes. Using non-invasive smart sensing technology, our proposed solution enables healthcare facilities to monitor patients’ health and enhance their physical rehabilitation plans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traceable Constant-Size Multi-authority Credentials Pspace-Completeness of the Temporal Logic of Sub-Intervals and Suffixes Employee Productivity Assessment Using Fuzzy Inference System Correction of Threshold Determination in Rapid-Guessing Behaviour Detection Combining Classifiers for Deep Learning Mask Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1