D A Parks, K V Raj, C A Berry, A T Weakley, P R Griffiths, A L Miller
{"title":"开发现场便携式实时有机碳和元素碳监测仪","authors":"D A Parks, K V Raj, C A Berry, A T Weakley, P R Griffiths, A L Miller","doi":"10.1007/s42461-019-0064-8","DOIUrl":null,"url":null,"abstract":"<p><p>Diesel particulate matter (DPM) has been classified as a carcinogen to humans by the International Agency for Research on Cancer. As a result of its potential carcinogenic nature, DPM exposure is regulated by the Mine Safety and Health Administration. Currently, diesel emissions in the workplace are monitored by collecting the aerosol onto filters, which are then sent to a laboratory for thermal-optical analysis using the NIOSH method 5040. This process can take days or even weeks, and workers can potentially be exposed to excessive levels of DPM before the problem is identified. Moreover, the delay involved in getting the loaded filter to the lab inevitably means the loss of some of the more volatile organic carbon. To remedy this delay, researchers from the National Institute for Occupational Safety and Health are seeking to develop a field-portable, real-time method for measuring elemental and organic carbons in DPM aerosols. In the current study, the use of mid-infrared spectrometry was investigated. It is believed that mid-infrared spectroscopy is more suitable for use in a real-time field-portable device than thermo-optical analysis methods. This article presents a method for measuring organic carbon (OC) and elemental carbon (EC) in DPM for a broad range of OC/EC ratios. The method has been successfully applied to laboratory-generated and mine samples.</p>","PeriodicalId":54672,"journal":{"name":"Optimal Control Applications & Methods","volume":"6 1","pages":"765-772"},"PeriodicalIF":2.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6863353/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards a Field-Portable Real-Time Organic and Elemental Carbon Monitor.\",\"authors\":\"D A Parks, K V Raj, C A Berry, A T Weakley, P R Griffiths, A L Miller\",\"doi\":\"10.1007/s42461-019-0064-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diesel particulate matter (DPM) has been classified as a carcinogen to humans by the International Agency for Research on Cancer. As a result of its potential carcinogenic nature, DPM exposure is regulated by the Mine Safety and Health Administration. Currently, diesel emissions in the workplace are monitored by collecting the aerosol onto filters, which are then sent to a laboratory for thermal-optical analysis using the NIOSH method 5040. This process can take days or even weeks, and workers can potentially be exposed to excessive levels of DPM before the problem is identified. Moreover, the delay involved in getting the loaded filter to the lab inevitably means the loss of some of the more volatile organic carbon. To remedy this delay, researchers from the National Institute for Occupational Safety and Health are seeking to develop a field-portable, real-time method for measuring elemental and organic carbons in DPM aerosols. In the current study, the use of mid-infrared spectrometry was investigated. It is believed that mid-infrared spectroscopy is more suitable for use in a real-time field-portable device than thermo-optical analysis methods. This article presents a method for measuring organic carbon (OC) and elemental carbon (EC) in DPM for a broad range of OC/EC ratios. The method has been successfully applied to laboratory-generated and mine samples.</p>\",\"PeriodicalId\":54672,\"journal\":{\"name\":\"Optimal Control Applications & Methods\",\"volume\":\"6 1\",\"pages\":\"765-772\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6863353/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimal Control Applications & Methods\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-019-0064-8\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/4/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications & Methods","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-019-0064-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/4/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Towards a Field-Portable Real-Time Organic and Elemental Carbon Monitor.
Diesel particulate matter (DPM) has been classified as a carcinogen to humans by the International Agency for Research on Cancer. As a result of its potential carcinogenic nature, DPM exposure is regulated by the Mine Safety and Health Administration. Currently, diesel emissions in the workplace are monitored by collecting the aerosol onto filters, which are then sent to a laboratory for thermal-optical analysis using the NIOSH method 5040. This process can take days or even weeks, and workers can potentially be exposed to excessive levels of DPM before the problem is identified. Moreover, the delay involved in getting the loaded filter to the lab inevitably means the loss of some of the more volatile organic carbon. To remedy this delay, researchers from the National Institute for Occupational Safety and Health are seeking to develop a field-portable, real-time method for measuring elemental and organic carbons in DPM aerosols. In the current study, the use of mid-infrared spectrometry was investigated. It is believed that mid-infrared spectroscopy is more suitable for use in a real-time field-portable device than thermo-optical analysis methods. This article presents a method for measuring organic carbon (OC) and elemental carbon (EC) in DPM for a broad range of OC/EC ratios. The method has been successfully applied to laboratory-generated and mine samples.
期刊介绍:
Optimal Control Applications & Methods provides a forum for papers on the full range of optimal and optimization based control theory and related control design methods. The aim is to encourage new developments in control theory and design methodologies that will lead to real advances in control applications. Papers are also encouraged on the development, comparison and testing of computational algorithms for solving optimal control and optimization problems. The scope also includes papers on optimal estimation and filtering methods which have control related applications. Finally, it will provide a focus for interesting optimal control design studies and report real applications experience covering problems in implementation and robustness.