{"title":"基于盲小波的图像水印","authors":"A. Algarni, Hanaa A. Abdallah","doi":"10.5772/INTECHOPEN.88131","DOIUrl":null,"url":null,"abstract":"In this chapter, the watermarking technique is blind; blind watermarking does not need any of the original images or any information about it to recover watermark. In this technique the watermark is inserted into the high frequencies. Three-level wavelet transform is applied to the image, and the size of the watermark is equal to the size of the detailed sub-band. Significant coefficients are used to embed the watermark. The proposed technique depends on quantization. The proposed watermarking technique generates images with less degradation.","PeriodicalId":34308,"journal":{"name":"Cyberspace","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Blind Wavelet-Based Image Watermarking\",\"authors\":\"A. Algarni, Hanaa A. Abdallah\",\"doi\":\"10.5772/INTECHOPEN.88131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, the watermarking technique is blind; blind watermarking does not need any of the original images or any information about it to recover watermark. In this technique the watermark is inserted into the high frequencies. Three-level wavelet transform is applied to the image, and the size of the watermark is equal to the size of the detailed sub-band. Significant coefficients are used to embed the watermark. The proposed technique depends on quantization. The proposed watermarking technique generates images with less degradation.\",\"PeriodicalId\":34308,\"journal\":{\"name\":\"Cyberspace\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyberspace\",\"FirstCategoryId\":\"1094\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.88131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyberspace","FirstCategoryId":"1094","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.88131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this chapter, the watermarking technique is blind; blind watermarking does not need any of the original images or any information about it to recover watermark. In this technique the watermark is inserted into the high frequencies. Three-level wavelet transform is applied to the image, and the size of the watermark is equal to the size of the detailed sub-band. Significant coefficients are used to embed the watermark. The proposed technique depends on quantization. The proposed watermarking technique generates images with less degradation.