基于审查的推荐的对抗性训练

Dimitrios Rafailidis, F. Crestani
{"title":"基于审查的推荐的对抗性训练","authors":"Dimitrios Rafailidis, F. Crestani","doi":"10.1145/3331184.3331313","DOIUrl":null,"url":null,"abstract":"Recent studies have shown that incorporating users' reviews into the collaborative filtering strategy can significantly boost the recommendation accuracy. A pressing challenge resides on learning how reviews influence users' rating behaviors. In this paper, we propose an Adversarial Training approach for Review-based recommendations, namely ATR. We design a neural architecture of sequence-to-sequence learning to calculate the deep representations of users' reviews on items following an adversarial training strategy. At the same time we jointly learn to factorize the rating matrix, by regularizing the deep representations of reviews with the user and item latent features. In doing so, our model captures the non-linear associations among reviews and ratings while producing a review for each user-item pair. Our experiments on publicly available datasets demonstrate the effectiveness of the proposed model, outperforming other state-of-the-art methods.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Adversarial Training for Review-Based Recommendations\",\"authors\":\"Dimitrios Rafailidis, F. Crestani\",\"doi\":\"10.1145/3331184.3331313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies have shown that incorporating users' reviews into the collaborative filtering strategy can significantly boost the recommendation accuracy. A pressing challenge resides on learning how reviews influence users' rating behaviors. In this paper, we propose an Adversarial Training approach for Review-based recommendations, namely ATR. We design a neural architecture of sequence-to-sequence learning to calculate the deep representations of users' reviews on items following an adversarial training strategy. At the same time we jointly learn to factorize the rating matrix, by regularizing the deep representations of reviews with the user and item latent features. In doing so, our model captures the non-linear associations among reviews and ratings while producing a review for each user-item pair. Our experiments on publicly available datasets demonstrate the effectiveness of the proposed model, outperforming other state-of-the-art methods.\",\"PeriodicalId\":20700,\"journal\":{\"name\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3331184.3331313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

最近的研究表明,将用户评论纳入协同过滤策略可以显著提高推荐的准确性。一个紧迫的挑战在于了解评论如何影响用户的评分行为。在本文中,我们提出了一种基于评论的推荐的对抗性训练方法,即ATR。我们设计了一个序列到序列学习的神经结构,以计算用户在对抗性训练策略下对物品评论的深度表示。同时,通过将评论的深度表征与用户和物品的潜在特征进行正则化,我们共同学习了评分矩阵的因式分解。在这样做的过程中,我们的模型捕获了评论和评级之间的非线性关联,同时为每个用户-项目对生成评论。我们在公开可用数据集上的实验证明了所提出模型的有效性,优于其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adversarial Training for Review-Based Recommendations
Recent studies have shown that incorporating users' reviews into the collaborative filtering strategy can significantly boost the recommendation accuracy. A pressing challenge resides on learning how reviews influence users' rating behaviors. In this paper, we propose an Adversarial Training approach for Review-based recommendations, namely ATR. We design a neural architecture of sequence-to-sequence learning to calculate the deep representations of users' reviews on items following an adversarial training strategy. At the same time we jointly learn to factorize the rating matrix, by regularizing the deep representations of reviews with the user and item latent features. In doing so, our model captures the non-linear associations among reviews and ratings while producing a review for each user-item pair. Our experiments on publicly available datasets demonstrate the effectiveness of the proposed model, outperforming other state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Task Completion Flows from Web APIs Session details: Session 6A: Social Media Sequence and Time Aware Neighborhood for Session-based Recommendations: STAN Adversarial Training for Review-Based Recommendations Hate Speech Detection is Not as Easy as You May Think: A Closer Look at Model Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1