{"title":"测试在噬菌体DNA包装分析中提出的范式转变","authors":"P. Serwer, E. Wright","doi":"10.1080/21597081.2016.1268664","DOIUrl":null,"url":null,"abstract":"ABSTRACT We argue that a paradigm shift is needed in the analysis of phage DNA packaging. We then test a prediction of the following paradigm shift-engendering hypothesis. The motor of phage DNA packaging has two cycles: (1) the well-known packaging ATPase-driven (type 1) cycle and (2) a proposed back-up, shell expansion/contraction-driven (type 2) cycle that reverses type 1 cycle stalls by expelling accidentally packaged non-DNA molecules. We test the prediction that increasing the cellular concentration of all macromolecules will cause packaging-active capsids to divert to states of hyper-expansion and contraction. We use a directed evolution-derived, 3-site phage T3 mutant, adapted to propagation in concentrated bacterial cytoplasm. We find this prediction correct while discovering novel T3 capsids previously obscure.","PeriodicalId":8686,"journal":{"name":"Bacteriophage","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Testing a proposed paradigm shift in analysis of phage DNA packaging\",\"authors\":\"P. Serwer, E. Wright\",\"doi\":\"10.1080/21597081.2016.1268664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We argue that a paradigm shift is needed in the analysis of phage DNA packaging. We then test a prediction of the following paradigm shift-engendering hypothesis. The motor of phage DNA packaging has two cycles: (1) the well-known packaging ATPase-driven (type 1) cycle and (2) a proposed back-up, shell expansion/contraction-driven (type 2) cycle that reverses type 1 cycle stalls by expelling accidentally packaged non-DNA molecules. We test the prediction that increasing the cellular concentration of all macromolecules will cause packaging-active capsids to divert to states of hyper-expansion and contraction. We use a directed evolution-derived, 3-site phage T3 mutant, adapted to propagation in concentrated bacterial cytoplasm. We find this prediction correct while discovering novel T3 capsids previously obscure.\",\"PeriodicalId\":8686,\"journal\":{\"name\":\"Bacteriophage\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bacteriophage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21597081.2016.1268664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bacteriophage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21597081.2016.1268664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Testing a proposed paradigm shift in analysis of phage DNA packaging
ABSTRACT We argue that a paradigm shift is needed in the analysis of phage DNA packaging. We then test a prediction of the following paradigm shift-engendering hypothesis. The motor of phage DNA packaging has two cycles: (1) the well-known packaging ATPase-driven (type 1) cycle and (2) a proposed back-up, shell expansion/contraction-driven (type 2) cycle that reverses type 1 cycle stalls by expelling accidentally packaged non-DNA molecules. We test the prediction that increasing the cellular concentration of all macromolecules will cause packaging-active capsids to divert to states of hyper-expansion and contraction. We use a directed evolution-derived, 3-site phage T3 mutant, adapted to propagation in concentrated bacterial cytoplasm. We find this prediction correct while discovering novel T3 capsids previously obscure.