利用低成本光伏监测系统对光伏电站开发太阳能资源进行评估

A. Sunarso, Devi Andriani, Dovian Iswanda, Nurhaidah Nurhaidah, Tri Pratomo, Halasan Sihombing, Y. Yunita, Wendhi Yuniarto, R. Rusman
{"title":"利用低成本光伏监测系统对光伏电站开发太阳能资源进行评估","authors":"A. Sunarso, Devi Andriani, Dovian Iswanda, Nurhaidah Nurhaidah, Tri Pratomo, Halasan Sihombing, Y. Yunita, Wendhi Yuniarto, R. Rusman","doi":"10.26418/elkha.v15i1.63847","DOIUrl":null,"url":null,"abstract":"In this work, we propose the use of a low-cost PV monitoring system for providing accurate and comprehensive data required in the development of efficient and reliable solar PV plants. The system is developed based on an open-source Arduino platform with the capability to monitor solar irradiance, and electric outputs and temperature of multiple solar panels, which should enable the accurate assessment of solar energy resource, as well as electrical energy produced by PV plant under real operating conditions. To demonstrate its applicability, the system has been installed at the campus of Politeknik Negeri Pontianak in Pontianak City, and the data collected by the system is used to assess solar energy resource at the location. Data collected by the system from August 2020 to September 2021 shows that the values of solar irradiation are in the range of 2.9–4.1 kWh/m2 per day, and electric energy produced by commercial solar panels are in the range of 0.30–0.46 kWh/m2 per day, correspond to the monthly averaged efficiencies of 8–13%. The values of solar irradiation are 15–40 % lower than those obtained from the space-averaged satellite data which are in the range of 4.1–5.8 kWh/m2 per day. This shows the significant effects of local conditions, and confirms the advantage of assessment using the low-cost monitoring system that directly accounts for the effects of local conditions without the need of simulation using complex model and sophisticated software that required in the assessment using satellite-derived data.","PeriodicalId":32754,"journal":{"name":"Elkha Jurnal Teknik Elektro","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessment of Solar Energy Resource for PV Plant Development Using a Low-cost PV Monitoring System\",\"authors\":\"A. Sunarso, Devi Andriani, Dovian Iswanda, Nurhaidah Nurhaidah, Tri Pratomo, Halasan Sihombing, Y. Yunita, Wendhi Yuniarto, R. Rusman\",\"doi\":\"10.26418/elkha.v15i1.63847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose the use of a low-cost PV monitoring system for providing accurate and comprehensive data required in the development of efficient and reliable solar PV plants. The system is developed based on an open-source Arduino platform with the capability to monitor solar irradiance, and electric outputs and temperature of multiple solar panels, which should enable the accurate assessment of solar energy resource, as well as electrical energy produced by PV plant under real operating conditions. To demonstrate its applicability, the system has been installed at the campus of Politeknik Negeri Pontianak in Pontianak City, and the data collected by the system is used to assess solar energy resource at the location. Data collected by the system from August 2020 to September 2021 shows that the values of solar irradiation are in the range of 2.9–4.1 kWh/m2 per day, and electric energy produced by commercial solar panels are in the range of 0.30–0.46 kWh/m2 per day, correspond to the monthly averaged efficiencies of 8–13%. The values of solar irradiation are 15–40 % lower than those obtained from the space-averaged satellite data which are in the range of 4.1–5.8 kWh/m2 per day. This shows the significant effects of local conditions, and confirms the advantage of assessment using the low-cost monitoring system that directly accounts for the effects of local conditions without the need of simulation using complex model and sophisticated software that required in the assessment using satellite-derived data.\",\"PeriodicalId\":32754,\"journal\":{\"name\":\"Elkha Jurnal Teknik Elektro\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elkha Jurnal Teknik Elektro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26418/elkha.v15i1.63847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elkha Jurnal Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/elkha.v15i1.63847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们建议使用一种低成本的光伏监测系统,为开发高效可靠的太阳能光伏电站提供准确、全面的数据。该系统基于开源Arduino平台开发,能够监测太阳辐照度、多个太阳能电池板的输出电量和温度,能够准确评估太阳能资源,以及光伏电站在实际运行条件下产生的电能。为了证明其适用性,该系统已安装在Pontianak市的Politeknik Negeri Pontianak校园,并使用该系统收集的数据来评估该地点的太阳能资源。系统从2020年8月至2021年9月收集的数据显示,太阳辐照值为2.9-4.1 kWh/m2 /天,商用太阳能电池板产生的电能为0.30-0.46 kWh/m2 /天,对应的月平均效率为8-13%。太阳辐照值比空间平均卫星资料得到的4.1 ~ 5.8 kWh/m2 /天的辐照值低15 ~ 40%。这显示了当地条件的重大影响,并证实了使用低成本监测系统进行评估的优势,该系统直接说明了当地条件的影响,而不需要使用复杂的模型和复杂的软件进行模拟,这是使用卫星数据进行评估所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of Solar Energy Resource for PV Plant Development Using a Low-cost PV Monitoring System
In this work, we propose the use of a low-cost PV monitoring system for providing accurate and comprehensive data required in the development of efficient and reliable solar PV plants. The system is developed based on an open-source Arduino platform with the capability to monitor solar irradiance, and electric outputs and temperature of multiple solar panels, which should enable the accurate assessment of solar energy resource, as well as electrical energy produced by PV plant under real operating conditions. To demonstrate its applicability, the system has been installed at the campus of Politeknik Negeri Pontianak in Pontianak City, and the data collected by the system is used to assess solar energy resource at the location. Data collected by the system from August 2020 to September 2021 shows that the values of solar irradiation are in the range of 2.9–4.1 kWh/m2 per day, and electric energy produced by commercial solar panels are in the range of 0.30–0.46 kWh/m2 per day, correspond to the monthly averaged efficiencies of 8–13%. The values of solar irradiation are 15–40 % lower than those obtained from the space-averaged satellite data which are in the range of 4.1–5.8 kWh/m2 per day. This shows the significant effects of local conditions, and confirms the advantage of assessment using the low-cost monitoring system that directly accounts for the effects of local conditions without the need of simulation using complex model and sophisticated software that required in the assessment using satellite-derived data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
23
审稿时长
10 weeks
期刊最新文献
Multi-oscillations Detection for Process Variables Based on K-Nearest Neighbor Interference Analysis Between 5G System and Fixed Satellite Service in the 28 GHz Band Heading control for quadruped stair climbing based on PD controller for the KRSRI competition Optimization Objective Function Corona Discharge Acoustic Using Fuzzy c-Means (FcM ) Temperature and Humidity Control System for Pole-Mounted Metering Circuit Breaker with Artificial Neural Network Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1