{"title":"统计建模与推理","authors":"Max A. Little","doi":"10.1093/oso/9780198714934.003.0004","DOIUrl":null,"url":null,"abstract":"The modern view of statistical machine learning and signal processing is that the central task is one of finding good probabilistic models for the joint distribution over all the variables in the problem. We can then make `queries' of this model, also known as inferences, to determine optimal parameter values or signals. Hence, the importance of statistical methods to this book cannot be overstated. This chapter is an in-depth exploration of what this probabilistic modeling entails, the origins of the concepts involved, how to perform inferences and how to test the quality of a model produced this way.","PeriodicalId":73290,"journal":{"name":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical modelling and inference\",\"authors\":\"Max A. Little\",\"doi\":\"10.1093/oso/9780198714934.003.0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The modern view of statistical machine learning and signal processing is that the central task is one of finding good probabilistic models for the joint distribution over all the variables in the problem. We can then make `queries' of this model, also known as inferences, to determine optimal parameter values or signals. Hence, the importance of statistical methods to this book cannot be overstated. This chapter is an in-depth exploration of what this probabilistic modeling entails, the origins of the concepts involved, how to perform inferences and how to test the quality of a model produced this way.\",\"PeriodicalId\":73290,\"journal\":{\"name\":\"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198714934.003.0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198714934.003.0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

统计机器学习和信号处理的现代观点是,中心任务是为问题中所有变量的联合分布找到一个好的概率模型。然后,我们可以对该模型进行“查询”,也称为推理,以确定最佳参数值或信号。因此,统计方法对本书的重要性怎么强调也不为过。本章深入探讨了这种概率建模需要什么,所涉及的概念的起源,如何执行推理以及如何测试以这种方式产生的模型的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical modelling and inference
The modern view of statistical machine learning and signal processing is that the central task is one of finding good probabilistic models for the joint distribution over all the variables in the problem. We can then make `queries' of this model, also known as inferences, to determine optimal parameter values or signals. Hence, the importance of statistical methods to this book cannot be overstated. This chapter is an in-depth exploration of what this probabilistic modeling entails, the origins of the concepts involved, how to perform inferences and how to test the quality of a model produced this way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DATA-DRIVEN LEARNING OF GEOMETRIC SCATTERING MODULES FOR GNNS. CONVOLUTIONAL RECURRENT NEURAL NETWORK BASED DIRECTION OF ARRIVAL ESTIMATION METHOD USING TWO MICROPHONES FOR HEARING STUDIES. LEARNING GENERAL TRANSFORMATIONS OF DATA FOR OUT-OF-SAMPLE EXTENSIONS. Statistical modelling and inference Probabilistic graphical models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1