对“关于“分子光电离的时间延迟”的评论”的回应:扩展讨论和技术笔记

P. Hockett, E. Frumker
{"title":"对“关于“分子光电离的时间延迟”的评论”的回应:扩展讨论和技术笔记","authors":"P. Hockett, E. Frumker","doi":"10.6084/m9.figshare.2007486","DOIUrl":null,"url":null,"abstract":"In a comment on our article Time delays in molecular photoionization [1], Baykusheva & W\\\"orner reproduce canonical scattering theory, and assert that our results are inconsistent with this well-established theory [2]. We absolutely refute this assertion and the spirit of the comment, although we do agree with Baykusheva & W\\\"orner that the textbook theory is correct. In a short response, Response to Comment on \"Time delays in molecular photoionization\" [3], we have already provided a clear rebuttal of the comment, but gave no technical details. In this fuller response we extend those brief comments in the spirit of completeness and clarity, and provide three clear rebuttals to Baykusheva & W\\\"orner based on (1) logical fallacy (category error), (2) theoretical details of the original article, (3) textural content of the original article. In particular, rebuttal (1) clearly and trivially points to the fact that there is no issue here whatsoever, with recourse to theoretical details barely required to demonstrate this, as outlined in the short version of our response. Our numerical results are correct and reproduce known physical phenomena, as discussed in the original article hence, as careful readers will recognise, the formalism used is canonical scattering theory, and cannot be anything other. In fact, there is no new fundamental physics here to dispute whatsoever, and nor was this the raison d'etre of the original article. Additionally, rebuttal (2) provides the opportunity to discuss, at length, some of these textbook aspects of photoionization theory, and we hope this discussion might be of service to new researchers entering this challenging field.","PeriodicalId":8439,"journal":{"name":"arXiv: Chemical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response to 'Comment on \\\"Time delays in molecular photoionization\\\"': Extended Discussion & Technical Notes\",\"authors\":\"P. Hockett, E. Frumker\",\"doi\":\"10.6084/m9.figshare.2007486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a comment on our article Time delays in molecular photoionization [1], Baykusheva & W\\\\\\\"orner reproduce canonical scattering theory, and assert that our results are inconsistent with this well-established theory [2]. We absolutely refute this assertion and the spirit of the comment, although we do agree with Baykusheva & W\\\\\\\"orner that the textbook theory is correct. In a short response, Response to Comment on \\\"Time delays in molecular photoionization\\\" [3], we have already provided a clear rebuttal of the comment, but gave no technical details. In this fuller response we extend those brief comments in the spirit of completeness and clarity, and provide three clear rebuttals to Baykusheva & W\\\\\\\"orner based on (1) logical fallacy (category error), (2) theoretical details of the original article, (3) textural content of the original article. In particular, rebuttal (1) clearly and trivially points to the fact that there is no issue here whatsoever, with recourse to theoretical details barely required to demonstrate this, as outlined in the short version of our response. Our numerical results are correct and reproduce known physical phenomena, as discussed in the original article hence, as careful readers will recognise, the formalism used is canonical scattering theory, and cannot be anything other. In fact, there is no new fundamental physics here to dispute whatsoever, and nor was this the raison d'etre of the original article. Additionally, rebuttal (2) provides the opportunity to discuss, at length, some of these textbook aspects of photoionization theory, and we hope this discussion might be of service to new researchers entering this challenging field.\",\"PeriodicalId\":8439,\"journal\":{\"name\":\"arXiv: Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6084/m9.figshare.2007486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6084/m9.figshare.2007486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Baykusheva & W\ orner在对我们的文章《分子光电离的时间延迟》发表评论时,重现了正则散射理论,并断言我们的结果与这一已建立的理论不一致。我们绝对驳斥这种说法和评论的精神,尽管我们同意Baykusheva和W\ \ orner的观点,即教科书理论是正确的。在对“分子光电离时间延迟”评论的简短回应[3]中,我们已经对评论进行了明确的反驳,但没有提供技术细节。在这篇更完整的回复中,我们本着完整性和清晰度的精神扩展了那些简短的评论,并根据(1)逻辑谬误(类别错误),(2)原文的理论细节,(3)原文的纹理内容,对Baykusheva & W\ orner提供了三个明确的反驳。特别是,反驳(1)清楚而琐碎地指出了这样一个事实,即这里无论如何都没有问题,借助于几乎不需要证明这一点的理论细节,正如我们回应的简短版本所概述的那样。我们的数值结果是正确的,并且再现了已知的物理现象,正如原文中所讨论的那样,因此,细心的读者会认识到,所使用的形式主义是正则散射理论,而不是其他任何东西。事实上,这里没有任何新的基础物理学值得争论,这也不是原文章存在的原因。此外,反驳(2)提供了详细讨论光电离理论的一些教科书方面的机会,我们希望这种讨论可能对进入这一具有挑战性的领域的新研究人员有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Response to 'Comment on "Time delays in molecular photoionization"': Extended Discussion & Technical Notes
In a comment on our article Time delays in molecular photoionization [1], Baykusheva & W\"orner reproduce canonical scattering theory, and assert that our results are inconsistent with this well-established theory [2]. We absolutely refute this assertion and the spirit of the comment, although we do agree with Baykusheva & W\"orner that the textbook theory is correct. In a short response, Response to Comment on "Time delays in molecular photoionization" [3], we have already provided a clear rebuttal of the comment, but gave no technical details. In this fuller response we extend those brief comments in the spirit of completeness and clarity, and provide three clear rebuttals to Baykusheva & W\"orner based on (1) logical fallacy (category error), (2) theoretical details of the original article, (3) textural content of the original article. In particular, rebuttal (1) clearly and trivially points to the fact that there is no issue here whatsoever, with recourse to theoretical details barely required to demonstrate this, as outlined in the short version of our response. Our numerical results are correct and reproduce known physical phenomena, as discussed in the original article hence, as careful readers will recognise, the formalism used is canonical scattering theory, and cannot be anything other. In fact, there is no new fundamental physics here to dispute whatsoever, and nor was this the raison d'etre of the original article. Additionally, rebuttal (2) provides the opportunity to discuss, at length, some of these textbook aspects of photoionization theory, and we hope this discussion might be of service to new researchers entering this challenging field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flexible model of water based on the dielectric and electromagnetic spectrum properties : TIP4P/$\epsilon$ Flex. Characterization of a Modular Flow Cell System for Electrocatalytic Experiments and Comparison to a Commercial RRDE System Predicting Gas-Particle Partitioning Coefficients of Atmospheric Molecules with Machine Learning Electron-stimulated desorption from molecular ices in the 0.15–2 keV regime (15‐crown‐5)BiI 3 as a Building Block for Halogen Bonded Supramolecular Aggregates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1