毫米波MIMO-OFDM系统的有效波束形成训练和信道估计

Hanyu Wang, Jun Fang, Huiping Duan, Hongbin Li
{"title":"毫米波MIMO-OFDM系统的有效波束形成训练和信道估计","authors":"Hanyu Wang, Jun Fang, Huiping Duan, Hongbin Li","doi":"10.1109/SAM48682.2020.9104337","DOIUrl":null,"url":null,"abstract":"We consider the problem of channel estimation for millimeter wave (mmWave) MIMO-OFDM systems. To efficiently probe the channel, the transmitter forms multiple beams simultaneously and steer them towards different directions. The objective of this paper is to devise the beamtraining patterns and develop an efficient algorithm to estimate the channel. By exploiting the common sparsity inherent in MIMO-OFDM mmWave channels, we develop a sparse bipartite graph coding-based method for joint beamforming training and channel estimation. Simulation results are provided to show the effectiveness of the proposed method.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"4 0 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems\",\"authors\":\"Hanyu Wang, Jun Fang, Huiping Duan, Hongbin Li\",\"doi\":\"10.1109/SAM48682.2020.9104337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of channel estimation for millimeter wave (mmWave) MIMO-OFDM systems. To efficiently probe the channel, the transmitter forms multiple beams simultaneously and steer them towards different directions. The objective of this paper is to devise the beamtraining patterns and develop an efficient algorithm to estimate the channel. By exploiting the common sparsity inherent in MIMO-OFDM mmWave channels, we develop a sparse bipartite graph coding-based method for joint beamforming training and channel estimation. Simulation results are provided to show the effectiveness of the proposed method.\",\"PeriodicalId\":6753,\"journal\":{\"name\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"4 0 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM48682.2020.9104337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了毫米波MIMO-OFDM系统的信道估计问题。为了有效地探测信道,发射机同时形成多个波束,并将它们引导到不同的方向。本文的目标是设计波束训练模式,并开发一种有效的信道估计算法。通过利用MIMO-OFDM毫米波信道固有的共同稀疏性,我们开发了一种基于稀疏二部图编码的联合波束形成训练和信道估计方法。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems
We consider the problem of channel estimation for millimeter wave (mmWave) MIMO-OFDM systems. To efficiently probe the channel, the transmitter forms multiple beams simultaneously and steer them towards different directions. The objective of this paper is to devise the beamtraining patterns and develop an efficient algorithm to estimate the channel. By exploiting the common sparsity inherent in MIMO-OFDM mmWave channels, we develop a sparse bipartite graph coding-based method for joint beamforming training and channel estimation. Simulation results are provided to show the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1