{"title":"贵金属薄膜沉积的原位光学表征及高性能等离子体传感器的研制","authors":"David J. Mandia","doi":"10.22215/etd/2016-11620","DOIUrl":null,"url":null,"abstract":"The present work addressed in this thesis introduces, for the first time, the use of tilted fiber Bragg grating (TFBG) sensors for accurate, real-time, and in-situ characterization of CVD and ALD processes for noble metals, but with a particular focus on gold due to its desirable optical and plasmonic properties. Through the use of orthogonally-polarized transverse electric (TE) and transverse magnetic (TM) resonance modes imposed by a boundary condition at the cladding-metal interface of the optical fiber, polarization-dependent resonances excited by the TFBG are easily decoupled. It was found that for ultrathin thicknesses of gold films from CVD (~6-65 nm), the anisotropic property of these films made it non-trivial to characterize their effective optical properties such as the real component of the permittivity. Nevertheless, the TFBG introduces a new sensing platform to the ALD and CVD community for extremely sensitive in-situ process monitoring. We later also demonstrate thin film growth at low (<10 cycle) numbers for the well-known Al2O3 thermal ALD process, as well as the plasma-enhanced gold ALD process. Finally, the use of ALD-grown gold coatings has been employed for the development of a plasmonic TFBG-based sensor with ultimate refractometric sensitivity (~550 nm/RIU).","PeriodicalId":8439,"journal":{"name":"arXiv: Chemical Physics","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ Optical Characterization of Noble Metal Thin Film Deposition and Development of a High-performance Plasmonic Sensor\",\"authors\":\"David J. Mandia\",\"doi\":\"10.22215/etd/2016-11620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work addressed in this thesis introduces, for the first time, the use of tilted fiber Bragg grating (TFBG) sensors for accurate, real-time, and in-situ characterization of CVD and ALD processes for noble metals, but with a particular focus on gold due to its desirable optical and plasmonic properties. Through the use of orthogonally-polarized transverse electric (TE) and transverse magnetic (TM) resonance modes imposed by a boundary condition at the cladding-metal interface of the optical fiber, polarization-dependent resonances excited by the TFBG are easily decoupled. It was found that for ultrathin thicknesses of gold films from CVD (~6-65 nm), the anisotropic property of these films made it non-trivial to characterize their effective optical properties such as the real component of the permittivity. Nevertheless, the TFBG introduces a new sensing platform to the ALD and CVD community for extremely sensitive in-situ process monitoring. We later also demonstrate thin film growth at low (<10 cycle) numbers for the well-known Al2O3 thermal ALD process, as well as the plasma-enhanced gold ALD process. Finally, the use of ALD-grown gold coatings has been employed for the development of a plasmonic TFBG-based sensor with ultimate refractometric sensitivity (~550 nm/RIU).\",\"PeriodicalId\":8439,\"journal\":{\"name\":\"arXiv: Chemical Physics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22215/etd/2016-11620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22215/etd/2016-11620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In-situ Optical Characterization of Noble Metal Thin Film Deposition and Development of a High-performance Plasmonic Sensor
The present work addressed in this thesis introduces, for the first time, the use of tilted fiber Bragg grating (TFBG) sensors for accurate, real-time, and in-situ characterization of CVD and ALD processes for noble metals, but with a particular focus on gold due to its desirable optical and plasmonic properties. Through the use of orthogonally-polarized transverse electric (TE) and transverse magnetic (TM) resonance modes imposed by a boundary condition at the cladding-metal interface of the optical fiber, polarization-dependent resonances excited by the TFBG are easily decoupled. It was found that for ultrathin thicknesses of gold films from CVD (~6-65 nm), the anisotropic property of these films made it non-trivial to characterize their effective optical properties such as the real component of the permittivity. Nevertheless, the TFBG introduces a new sensing platform to the ALD and CVD community for extremely sensitive in-situ process monitoring. We later also demonstrate thin film growth at low (<10 cycle) numbers for the well-known Al2O3 thermal ALD process, as well as the plasma-enhanced gold ALD process. Finally, the use of ALD-grown gold coatings has been employed for the development of a plasmonic TFBG-based sensor with ultimate refractometric sensitivity (~550 nm/RIU).