{"title":"与一些丝状真菌共培养小球藻的收获","authors":"R. H. Al-Shammari","doi":"10.23851/mjs.v28i2.497","DOIUrl":null,"url":null,"abstract":"Algae are play a major role as straight producers of biofuels, so expansion of a new. harvesting-technology is important to achieve economic feasibility of biofuel production from algae.. Fungal pelletization-assisted.. Microalgal harvesting has Emerged as new research area for decreasing the harvesting cost and energy inputs in the algae-to-biofuel method. The present study tried to opti-mize process circumstances as (substrate inputs, process time and pH). Through choice of a ro-bust fungal strain. Four fungal strains (Aspergillus terreus, Trichoderma sp., Mucor sp. and Rhi-zopus sp.) were screened for their pelletizing efficiency in fresh/supplemented chu-10 with select-ed media nutrient (glucose, nitrogen and phosphorous). Results showed that Aspergillus terreus was the most efficient strain for pelletizing in the nutrient supplemented chu-10 with its neutral pH (7) and acidic pH (5). Stimulatingly, A. terreus was capable to harvest nearly 100 % of the Clorella sp. cells (1×106 spore/ml at optical density (OD) approximately 2.5 initial working algal concentration) within only 24 h. at supplementation of (10 g/l glucose, 2.5 mg/l aNH4NO3 and 0.5 mg/l mK2HPO4) also performed well at lower glucose level (5 g/l) can also results in similar har-vesting but its need relatively higher incubation time. The procedure kinetics in term of harvesting index (H. I) as well as the variation of residual glucose and pH with time was also studied. The mechanism of harvesting process was studied through microscopic, examination. A. terreus strain investigated in this study could emerge as an efficient, sustainable and economically viable tool in microalgae harvesting for biofuel production and time conservation","PeriodicalId":7515,"journal":{"name":"Al-Mustansiriyah Journal of Sciences","volume":"32 1","pages":"35-42"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harvesting of Chlorella sp. by Co-cultivation with Some Fil-amentous Fungi\",\"authors\":\"R. H. Al-Shammari\",\"doi\":\"10.23851/mjs.v28i2.497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algae are play a major role as straight producers of biofuels, so expansion of a new. harvesting-technology is important to achieve economic feasibility of biofuel production from algae.. Fungal pelletization-assisted.. Microalgal harvesting has Emerged as new research area for decreasing the harvesting cost and energy inputs in the algae-to-biofuel method. The present study tried to opti-mize process circumstances as (substrate inputs, process time and pH). Through choice of a ro-bust fungal strain. Four fungal strains (Aspergillus terreus, Trichoderma sp., Mucor sp. and Rhi-zopus sp.) were screened for their pelletizing efficiency in fresh/supplemented chu-10 with select-ed media nutrient (glucose, nitrogen and phosphorous). Results showed that Aspergillus terreus was the most efficient strain for pelletizing in the nutrient supplemented chu-10 with its neutral pH (7) and acidic pH (5). Stimulatingly, A. terreus was capable to harvest nearly 100 % of the Clorella sp. cells (1×106 spore/ml at optical density (OD) approximately 2.5 initial working algal concentration) within only 24 h. at supplementation of (10 g/l glucose, 2.5 mg/l aNH4NO3 and 0.5 mg/l mK2HPO4) also performed well at lower glucose level (5 g/l) can also results in similar har-vesting but its need relatively higher incubation time. The procedure kinetics in term of harvesting index (H. I) as well as the variation of residual glucose and pH with time was also studied. The mechanism of harvesting process was studied through microscopic, examination. A. terreus strain investigated in this study could emerge as an efficient, sustainable and economically viable tool in microalgae harvesting for biofuel production and time conservation\",\"PeriodicalId\":7515,\"journal\":{\"name\":\"Al-Mustansiriyah Journal of Sciences\",\"volume\":\"32 1\",\"pages\":\"35-42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Mustansiriyah Journal of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23851/mjs.v28i2.497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Mustansiriyah Journal of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23851/mjs.v28i2.497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Harvesting of Chlorella sp. by Co-cultivation with Some Fil-amentous Fungi
Algae are play a major role as straight producers of biofuels, so expansion of a new. harvesting-technology is important to achieve economic feasibility of biofuel production from algae.. Fungal pelletization-assisted.. Microalgal harvesting has Emerged as new research area for decreasing the harvesting cost and energy inputs in the algae-to-biofuel method. The present study tried to opti-mize process circumstances as (substrate inputs, process time and pH). Through choice of a ro-bust fungal strain. Four fungal strains (Aspergillus terreus, Trichoderma sp., Mucor sp. and Rhi-zopus sp.) were screened for their pelletizing efficiency in fresh/supplemented chu-10 with select-ed media nutrient (glucose, nitrogen and phosphorous). Results showed that Aspergillus terreus was the most efficient strain for pelletizing in the nutrient supplemented chu-10 with its neutral pH (7) and acidic pH (5). Stimulatingly, A. terreus was capable to harvest nearly 100 % of the Clorella sp. cells (1×106 spore/ml at optical density (OD) approximately 2.5 initial working algal concentration) within only 24 h. at supplementation of (10 g/l glucose, 2.5 mg/l aNH4NO3 and 0.5 mg/l mK2HPO4) also performed well at lower glucose level (5 g/l) can also results in similar har-vesting but its need relatively higher incubation time. The procedure kinetics in term of harvesting index (H. I) as well as the variation of residual glucose and pH with time was also studied. The mechanism of harvesting process was studied through microscopic, examination. A. terreus strain investigated in this study could emerge as an efficient, sustainable and economically viable tool in microalgae harvesting for biofuel production and time conservation