对话系统的深度学习:闲聊和超越

IF 8.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Foundations and Trends in Information Retrieval Pub Date : 2022-01-01 DOI:10.1561/1500000083
Rui Yan, Juntao Li, Zhou Yu
{"title":"对话系统的深度学习:闲聊和超越","authors":"Rui Yan, Juntao Li, Zhou Yu","doi":"10.1561/1500000083","DOIUrl":null,"url":null,"abstract":"Recommendation, information retrieval, and other information access systems pose unique challenges for investigating and applying the fairness and non-discrimination concepts that have been developed for studying other machine learning systems. While fair information access shares many commonalities with fair classification, there are important differences: the multistakeholder nature of information access applications, the rank-based problem setting, the centrality of personalization in many cases, and the role of user response all complicate the problem of identifying precisely what types and operationalizations of fairness may be relevant. In this monograph, we present a taxonomy of the various dimensions of fair information access and survey the literature to date on this new and rapidly-growing topic. We Michael D. Ekstrand, Anubrata Das, Robin Burke and Fernando Diaz (2022), “Fairness in Information Access Systems”, Foundations and Trends® in Information Retrieval: Vol. 16, No. 1-2, pp 1–177. DOI: 10.1561/1500000079. ©2022 M. D. Ekstrand et al. Full text available at: http://dx.doi.org/10.1561/1500000079","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"19 1","pages":"417-589"},"PeriodicalIF":8.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Deep Learning for Dialogue Systems: Chit-Chat and Beyond\",\"authors\":\"Rui Yan, Juntao Li, Zhou Yu\",\"doi\":\"10.1561/1500000083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommendation, information retrieval, and other information access systems pose unique challenges for investigating and applying the fairness and non-discrimination concepts that have been developed for studying other machine learning systems. While fair information access shares many commonalities with fair classification, there are important differences: the multistakeholder nature of information access applications, the rank-based problem setting, the centrality of personalization in many cases, and the role of user response all complicate the problem of identifying precisely what types and operationalizations of fairness may be relevant. In this monograph, we present a taxonomy of the various dimensions of fair information access and survey the literature to date on this new and rapidly-growing topic. We Michael D. Ekstrand, Anubrata Das, Robin Burke and Fernando Diaz (2022), “Fairness in Information Access Systems”, Foundations and Trends® in Information Retrieval: Vol. 16, No. 1-2, pp 1–177. DOI: 10.1561/1500000079. ©2022 M. D. Ekstrand et al. Full text available at: http://dx.doi.org/10.1561/1500000079\",\"PeriodicalId\":48829,\"journal\":{\"name\":\"Foundations and Trends in Information Retrieval\",\"volume\":\"19 1\",\"pages\":\"417-589\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations and Trends in Information Retrieval\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1561/1500000083\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Information Retrieval","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1561/1500000083","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 10

摘要

推荐、信息检索和其他信息访问系统对调查和应用公平和非歧视概念提出了独特的挑战,这些概念已经为研究其他机器学习系统而开发。虽然公平的信息访问与公平的分类有许多共同点,但也有重要的区别:信息访问应用的多利益相关者性质、基于排名的问题设置、在许多情况下个性化的中心地位以及用户响应的作用,所有这些都使准确识别公平的类型和操作可能相关的问题复杂化。在这本专著中,我们提出了公平信息获取的各个维度的分类,并调查了迄今为止关于这个新的和快速增长的主题的文献。我们Michael D. Ekstrand, Anubrata Das, Robin Burke和Fernando Diaz(2022),“信息获取系统的公平性”,《信息检索的基础与趋势》,第16卷第1-2期,第1-177页。DOI: 10.1561 / 1500000079。©2022 M. D. Ekstrand等。全文可在:http://dx.doi.org/10.1561/1500000079
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning for Dialogue Systems: Chit-Chat and Beyond
Recommendation, information retrieval, and other information access systems pose unique challenges for investigating and applying the fairness and non-discrimination concepts that have been developed for studying other machine learning systems. While fair information access shares many commonalities with fair classification, there are important differences: the multistakeholder nature of information access applications, the rank-based problem setting, the centrality of personalization in many cases, and the role of user response all complicate the problem of identifying precisely what types and operationalizations of fairness may be relevant. In this monograph, we present a taxonomy of the various dimensions of fair information access and survey the literature to date on this new and rapidly-growing topic. We Michael D. Ekstrand, Anubrata Das, Robin Burke and Fernando Diaz (2022), “Fairness in Information Access Systems”, Foundations and Trends® in Information Retrieval: Vol. 16, No. 1-2, pp 1–177. DOI: 10.1561/1500000079. ©2022 M. D. Ekstrand et al. Full text available at: http://dx.doi.org/10.1561/1500000079
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations and Trends in Information Retrieval
Foundations and Trends in Information Retrieval COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
39.10
自引率
0.00%
发文量
3
期刊介绍: The surge in research across all domains in the past decade has resulted in a plethora of new publications, causing an exponential growth in published research. Navigating through this extensive literature and staying current has become a time-consuming challenge. While electronic publishing provides instant access to more articles than ever, discerning the essential ones for a comprehensive understanding of any topic remains an issue. To tackle this, Foundations and Trends® in Information Retrieval - FnTIR - addresses the problem by publishing high-quality survey and tutorial monographs in the field. Each issue of Foundations and Trends® in Information Retrieval - FnT IR features a 50-100 page monograph authored by research leaders, covering tutorial subjects, research retrospectives, and survey papers that provide state-of-the-art reviews within the scope of the journal.
期刊最新文献
Multi-hop Question Answering User Simulation for Evaluating Information Access Systems Conversational Information Seeking Perspectives of Neurodiverse Participants in Interactive Information Retrieval Efficient and Effective Tree-based and Neural Learning to Rank
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1