Information access systems, such as search engines, recommender systems, and conversational assistants, have become integral to our daily lives as they help us satisfy our information needs. However, evaluating the effectiveness of these systems presents a long-standing and complex scientific challenge. This challenge is rooted in the difficulty of assessing a system’s overall effectiveness in assisting users to complete tasks through interactive support, and further exacerbated by the substantial variation in user behaviour and preferences. To address this challenge, user simulation emerges as a promising solution.
This monograph focuses on providing a thorough understanding of user simulation techniques designed specifically for evaluation purposes. We begin with a background of information access system evaluation and explore the diverse applications of user simulation. Subsequently, we systematically review the major research progress in user simulation, covering both general frameworks for designing user simulators, utilizing user simulation for evaluation, and specific models and algorithms for simulating user interactions with search engines, recommender systems, and conversational assistants. Realizing that user simulation is an interdisciplinary research topic, whenever possible, we attempt to establish connections with related fields, including machine learning, dialogue systems, user modeling, and economics. We end the monograph with a broad discussion of important future research directions, many of which extend beyond the evaluation of information access systems and are expected to have broader impact on how to evaluate interactive intelligent systems in general.
{"title":"User Simulation for Evaluating Information Access Systems","authors":"Krisztian Balog, ChengXiang Zhai","doi":"10.1561/1500000098","DOIUrl":"https://doi.org/10.1561/1500000098","url":null,"abstract":"<p>Information access systems, such as search engines, recommender\u0000systems, and conversational assistants, have become\u0000integral to our daily lives as they help us satisfy our information\u0000needs. However, evaluating the effectiveness of\u0000these systems presents a long-standing and complex scientific\u0000challenge. This challenge is rooted in the difficulty of\u0000assessing a system’s overall effectiveness in assisting users\u0000to complete tasks through interactive support, and further\u0000exacerbated by the substantial variation in user behaviour\u0000and preferences. To address this challenge, user simulation\u0000emerges as a promising solution.<p>This monograph focuses on providing a thorough understanding\u0000of user simulation techniques designed specifically\u0000for evaluation purposes. We begin with a background of information\u0000access system evaluation and explore the diverse\u0000applications of user simulation. Subsequently, we systematically\u0000review the major research progress in user simulation,\u0000covering both general frameworks for designing user simulators,\u0000utilizing user simulation for evaluation, and specific\u0000models and algorithms for simulating user interactions with\u0000search engines, recommender systems, and conversational\u0000assistants. Realizing that user simulation is an interdisciplinary\u0000research topic, whenever possible, we attempt to\u0000establish connections with related fields, including machine\u0000learning, dialogue systems, user modeling, and economics.\u0000We end the monograph with a broad discussion of important\u0000future research directions, many of which extend beyond the\u0000evaluation of information access systems and are expected\u0000to have broader impact on how to evaluate interactive intelligent\u0000systems in general.</p></p>","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"33 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The task of Question Answering (QA) has attracted significant research interest for a long time. Its relevance to language understanding and knowledge retrieval tasks, along with the simple setting, makes the task of QA crucial for strong AI systems. Recent success on simple QA tasks has shifted the focus to more complex settings. Among these, Multi-Hop QA (MHQA) is one of the most researched tasks over recent years. In broad terms, MHQA is the task of answering natural language questions that involve extracting and combining multiple pieces of information and doing multiple steps of reasoning. An example of a multi-hop question would be “The Argentine PGA Championship record holder has won how many tournaments worldwide?”. Answering the question would need two pieces of information: “Who is the record holder for Argentine PGA Championship tournaments?” and “How many tournaments did [Answer of Sub Q1] win?”. The ability to answer multi-hop questions and perform multi step reasoning can significantly improve the utility of NLP systems. Consequently, the field has seen a surge of high quality datasets, models and evaluation strategies. The notion of ‘multiple hops’ is somewhat abstract which results in a large variety of tasks that require multihop reasoning. This leads to different datasets and models that differ significantly from each other and make the field challenging to generalize and survey. We aim to provide a general and formal definition of the MHQA task, and organize and summarize existing MHQA frameworks. We also outline some best practices for building MHQA datasets. This monograph provides a systematic and thorough introduction as well as the structuring of the existing attempts to this highly interesting, yet quite challenging task.
{"title":"Multi-hop Question Answering","authors":"Vaibhav Mavi, Anubhav Jangra, Jatowt Adam","doi":"10.1561/1500000102","DOIUrl":"https://doi.org/10.1561/1500000102","url":null,"abstract":"<p>The task of Question Answering (QA) has attracted significant\u0000research interest for a long time. Its relevance to\u0000language understanding and knowledge retrieval tasks, along\u0000with the simple setting, makes the task of QA crucial for\u0000strong AI systems. Recent success on simple QA tasks has\u0000shifted the focus to more complex settings. Among these,\u0000Multi-Hop QA (MHQA) is one of the most researched tasks\u0000over recent years. In broad terms, MHQA is the task of answering\u0000natural language questions that involve extracting\u0000and combining multiple pieces of information and doing multiple\u0000steps of reasoning. An example of a multi-hop question\u0000would be “The Argentine PGA Championship record holder\u0000has won how many tournaments worldwide?”. Answering\u0000the question would need two pieces of information: “Who is\u0000the record holder for Argentine PGA Championship tournaments?”\u0000and “How many tournaments did [Answer of Sub\u0000Q1] win?”. The ability to answer multi-hop questions and\u0000perform multi step reasoning can significantly improve the\u0000utility of NLP systems. Consequently, the field has seen a\u0000surge of high quality datasets, models and evaluation strategies.\u0000The notion of ‘multiple hops’ is somewhat abstract\u0000which results in a large variety of tasks that require multihop\u0000reasoning. This leads to different datasets and models\u0000that differ significantly from each other and make the field\u0000challenging to generalize and survey. We aim to provide a\u0000general and formal definition of the MHQA task, and organize\u0000and summarize existing MHQA frameworks. We also\u0000outline some best practices for building MHQA datasets.\u0000This monograph provides a systematic and thorough introduction\u0000as well as the structuring of the existing attempts\u0000to this highly interesting, yet quite challenging task.</p>","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"44 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hamed Zamani, Johanne R. Trippas, Jeff Dalton, Filip Radlinski
Conversational information seeking (CIS) is concerned with a sequence of interactions between one or more users and an information system. Interactions in CIS are primarily based on natural language dialogue, while they may include other types of interactions, such as click, touch, and body gestures. This monograph provides a thorough overview of CIS definitions, applications, interactions, interfaces, design, implementation, and evaluation. This monograph views CIS applications as including conversational search, conversational question answering, and conversational recommendation. Our aim is to provide an overview of past research related to CIS, introduce the current state-of-the-art in CIS, highlight the challenges still being faced in the community, and suggest future directions.
{"title":"Conversational Information Seeking","authors":"Hamed Zamani, Johanne R. Trippas, Jeff Dalton, Filip Radlinski","doi":"10.1561/1500000081","DOIUrl":"https://doi.org/10.1561/1500000081","url":null,"abstract":"<p>Conversational information seeking (CIS) is concerned with a sequence of interactions between one or more users and an information system. Interactions in CIS are primarily based on natural language dialogue, while they may include other types of interactions, such as click, touch, and body gestures. This monograph provides a thorough overview of CIS definitions, applications, interactions, interfaces, design, implementation, and evaluation. This monograph views CIS applications as including conversational search, conversational question answering, and conversational recommendation. Our aim is to provide an overview of past research related to CIS, introduce the current state-of-the-art in CIS, highlight the challenges still being faced in the community, and suggest future directions.</p>","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"8 31","pages":""},"PeriodicalIF":10.4,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49696574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This monograph offers a survey of work to date to inform how interactions in information retrieval systems could afford inclusion of users who are neurodiverse. This existing work is positioned within a range of philosophies, frameworks and epistemologies which frame the importance of including neurodiverse users in all stages of research and development of Interactive Information Retrieval (IIR) systems. The monograph also offers examples and practical approaches to include neurodiverse users in IIR research, and explores the challenges ahead in the field.
{"title":"Perspectives of Neurodiverse Participants in Interactive Information Retrieval","authors":"Laurianne Sitbon, Gerd Berget, Margot Brereton","doi":"10.1561/1500000086","DOIUrl":"https://doi.org/10.1561/1500000086","url":null,"abstract":"<p>This monograph offers a survey of work to date to inform how interactions in information retrieval systems could afford inclusion of users who are neurodiverse. This existing work is positioned within a range of philosophies, frameworks and epistemologies which frame the importance of including neurodiverse users in all stages of research and development of Interactive Information Retrieval (IIR) systems. The monograph also offers examples and practical approaches to include neurodiverse users in IIR research, and explores the challenges ahead in the field.</p>","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"21 4","pages":""},"PeriodicalIF":10.4,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49696873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sebastian Bruch, Claudio Lucchese, Franco Maria Nardini
As information retrieval researchers, we not only develop algorithmic solutions to hard problems, but we also insist on a proper, multifaceted evaluation of ideas. The literature on the fundamental topic of retrieval and ranking, for instance, has a rich history of studying the effectiveness of indexes, retrieval algorithms, and complex machine learning rankers, while at the same time quantifying their computational costs, from creation and training to application and inference. This is evidenced, for example, by more than a decade of research on efficient training and inference of large decision forest models in Learning to Rank (LtR). As we move towards even more complex, deep learning models in a wide range of applications, questions on efficiency have once again resurfaced with renewed urgency. Indeed, efficiency is no longer limited to time and space; instead it has found new, challenging dimensions that stretch to resource-, sample- and energy-efficiency with ramifications for researchers, users, and the environment.
This monograph takes a step towards promoting the study of efficiency in the era of neural information retrieval by offering a comprehensive survey of the literature on efficiency and effectiveness in ranking, and to a limited extent, retrieval. This monograph was inspired by the parallels that exist between the challenges in neural network-based ranking solutions and their predecessors, decision forest-based LtR models, as well as the connections between the solutions the literature to date has to offer. We believe that by understanding the fundamentals underpinning these algorithmic and data structure solutions for containing the contentious relationship between efficiency and effectiveness, one can better identify future directions and more efficiently determine the merits of ideas. We also present what we believe to be important research directions in the forefront of efficiency and effectiveness in retrieval and ranking.
{"title":"Efficient and Effective Tree-based and Neural Learning to Rank","authors":"Sebastian Bruch, Claudio Lucchese, Franco Maria Nardini","doi":"10.1561/1500000071","DOIUrl":"https://doi.org/10.1561/1500000071","url":null,"abstract":"<p>As information retrieval researchers, we not only develop algorithmic solutions to hard problems, but we also insist on a proper, multifaceted evaluation of ideas. The literature on the fundamental topic of retrieval and ranking, for instance, has a rich history of studying the effectiveness of indexes, retrieval algorithms, and complex machine learning rankers, while at the same time quantifying their computational costs, from creation and training to application and inference. This is evidenced, for example, by more than a decade of research on efficient training and inference of large decision forest models in Learning to Rank (LtR). As we move towards even more complex, deep learning models in a wide range of applications, questions on efficiency have once again resurfaced with renewed urgency. Indeed, efficiency is no longer limited to time and space; instead it has found new, challenging dimensions that stretch to resource-, sample- and energy-efficiency with ramifications for researchers, users, and the environment.<p>This monograph takes a step towards promoting the study of efficiency in the era of neural information retrieval by offering a comprehensive survey of the literature on efficiency and effectiveness in ranking, and to a limited extent, retrieval. This monograph was inspired by the parallels that exist between the challenges in neural network-based ranking solutions and their predecessors, decision forest-based LtR models, as well as the connections between the solutions the literature to date has to offer. We believe that by understanding the fundamentals underpinning these algorithmic and data structure solutions for containing the contentious relationship between efficiency and effectiveness, one can better identify future directions and more efficiently determine the merits of ideas. We also present what we believe to be important research directions in the forefront of efficiency and effectiveness in retrieval and ranking.</p></p>","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"72 4","pages":""},"PeriodicalIF":10.4,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49697987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The introduction of Quantum Theory (QT) provides a unified mathematical framework for Information Retrieval (IR). Compared with the classical IR framework, the quantuminspired IR framework is based on user-centered modeling methods to model non-classical cognitive phenomena in human relevance judgment in the IR process. With the increase of data and computing resources, neural IR methods have been applied to the text matching and understanding task of IR. Neural networks have a strong learning ability of effective representation and generalization of matching patterns from raw data. However, these methods show some unavoidable defects, such as the inability to model user cognitive phenomena, large number of model parameters and the “black box” characteristics of network structure. These problems greatly limit the development of neural IR and related fields. Although the quantum-inspired retrieval framework can theoretically solve the above problems, it is faced with problems such as poor model efficiency and difficulty in integrating with neural network, which lead to a huge gap between QT and neural network modeling.
This review gives a systematic introduction to quantuminspired neural IR, including quantum-inspired neural language representation, matching and understanding. This is not only helpful to non-classical phenomena modeling in IR but also to break the theoretical bottleneck of neural networks and design more transparent neural IR models. We introduce the language representation method based on QT and the quantum-inspired text matching and decision making model under neural network, which shows its theoretical advantages in document ranking, relevance matching, multimodal IR, and can be integrated with neural networks to jointly promote the development of IR. The latest progress of quantum language understanding is introduced and further topics on QT and language modeling provide readers with more materials for thinking.
{"title":"Quantum-Inspired Neural Language Representation, Matching and Understanding","authors":"Peng Zhang, Hui Gao, Jing Zhang, Dawei Song","doi":"10.1561/1500000091","DOIUrl":"https://doi.org/10.1561/1500000091","url":null,"abstract":"<p>The introduction of Quantum Theory (QT) provides a unified mathematical framework for Information Retrieval (IR). Compared with the classical IR framework, the quantuminspired IR framework is based on user-centered modeling methods to model non-classical cognitive phenomena in human relevance judgment in the IR process. With the increase of data and computing resources, neural IR methods have been applied to the text matching and understanding task of IR. Neural networks have a strong learning ability of effective representation and generalization of matching patterns from raw data. However, these methods show some unavoidable defects, such as the inability to model user cognitive phenomena, large number of model parameters and the “black box” characteristics of network structure. These problems greatly limit the development of neural IR and related fields. Although the quantum-inspired retrieval framework can theoretically solve the above problems, it is faced with problems such as poor model efficiency and difficulty in integrating with neural network, which lead to a huge gap between QT and neural network modeling.<p>This review gives a systematic introduction to quantuminspired neural IR, including quantum-inspired neural language representation, matching and understanding. This is not only helpful to non-classical phenomena modeling in IR but also to break the theoretical bottleneck of neural networks and design more transparent neural IR models. We introduce the language representation method based on QT and the quantum-inspired text matching and decision making model under neural network, which shows its theoretical advantages in document ranking, relevance matching, multimodal IR, and can be integrated with neural networks to jointly promote the development of IR. The latest progress of quantum language understanding is introduced and further topics on QT and language modeling provide readers with more materials for thinking.</p></p>","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"54 45","pages":""},"PeriodicalIF":10.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49698420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Lex, Dominik Kowald, Paul Seitlinger, Thi Ngoc Trang Tran, A. Felfernig, M. Schedl
Personalized recommender systems have become indispensable in today’s online world. Most of today’s recommendation algorithms are data-driven and based on behavioral data. While such systems can produce useful recommendations, they are often uninterpretable, black-box models, which do not incorporate the underlying cognitive reasons for user behavior in the algorithms’ design. The aim of this survey is to present a thorough review of the state of the art of recommender systems that leverage psychological constructs and theories to model and predict user behavior and improve the recommendation process. We call such systems psychology-informed recommender systems. The survey identifies three categories of psychology-informed recommender systems: cognition-inspired, personality-aware, and affectaware recommender systems. Moreover, for each category, Elisabeth Lex, Dominik Kowald, Paul Seitlinger, Thi Ngoc Trang Tran, Alexander Felfernig and Markus Schedl (2021), “Psychology-informed Recommender Systems”, Foundations and Trends® in Information Retrieval: Vol. 15, No. 2, pp 134–242. DOI: 10.1561/1500000090. Full text available at: http://dx.doi.org/10.1561/1500000090
个性化推荐系统在当今的网络世界中已经不可或缺。今天的大多数推荐算法都是数据驱动的,基于行为数据。虽然这样的系统可以产生有用的建议,但它们通常是不可解释的黑箱模型,没有在算法设计中纳入用户行为的潜在认知原因。本调查的目的是对推荐系统的现状进行全面的回顾,这些系统利用心理学结构和理论来建模和预测用户行为,并改进推荐过程。我们称这种系统为基于心理的推荐系统。该调查确定了三类基于心理学的推荐系统:认知启发型、个性感知型和情感感知型推荐系统。此外,对于每个类别,Elisabeth Lex, Dominik Kowald, Paul Seitlinger, Thi Ngoc Trang Tran, Alexander felferning和Markus Schedl(2021),“心理通知推荐系统”,信息检索的基础和趋势®:第15卷,第2期,第134-242页。DOI: 10.1561 / 1500000090。全文可在:http://dx.doi.org/10.1561/1500000090
{"title":"Psychology-informed Recommender Systems","authors":"E. Lex, Dominik Kowald, Paul Seitlinger, Thi Ngoc Trang Tran, A. Felfernig, M. Schedl","doi":"10.1561/1500000090","DOIUrl":"https://doi.org/10.1561/1500000090","url":null,"abstract":"Personalized recommender systems have become indispensable in today’s online world. Most of today’s recommendation algorithms are data-driven and based on behavioral data. While such systems can produce useful recommendations, they are often uninterpretable, black-box models, which do not incorporate the underlying cognitive reasons for user behavior in the algorithms’ design. The aim of this survey is to present a thorough review of the state of the art of recommender systems that leverage psychological constructs and theories to model and predict user behavior and improve the recommendation process. We call such systems psychology-informed recommender systems. The survey identifies three categories of psychology-informed recommender systems: cognition-inspired, personality-aware, and affectaware recommender systems. Moreover, for each category, Elisabeth Lex, Dominik Kowald, Paul Seitlinger, Thi Ngoc Trang Tran, Alexander Felfernig and Markus Schedl (2021), “Psychology-informed Recommender Systems”, Foundations and Trends® in Information Retrieval: Vol. 15, No. 2, pp 134–242. DOI: 10.1561/1500000090. Full text available at: http://dx.doi.org/10.1561/1500000090","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"10 1","pages":"134-242"},"PeriodicalIF":10.4,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87436257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Bendersky, Xuanhui Wang, Marc Najork, Donald Metzler
Email has been an essential communication medium for many years. As a result, the information accumulated in our mailboxes has become valuable for all of our personal and professional activities. For years, researchers have been developing interfaces, models and algorithms to facilitate search, discovery and organization of email data. In this survey, we attempt to bring together these diverse research directions, and provide both a historical background, as well as a comprehensive overview of the recent advances in the field. In particular, we lay out all the components needed in the design of a privacy-centric email search engine, including search interface, indexing, document and query understanding, retrieval, ranking and evaluation. We also go beyond search, presenting recent work on intelligent task assistance in email. Finally, we discuss some emerging trends and future directions in email search and discovery research.
{"title":"Search and Discovery in Personal Email Collections","authors":"Michael Bendersky, Xuanhui Wang, Marc Najork, Donald Metzler","doi":"10.1561/1500000069","DOIUrl":"https://doi.org/10.1561/1500000069","url":null,"abstract":"<p>Email has been an essential communication medium for many years. As a result, the information accumulated in our mailboxes has become valuable for all of our personal and professional activities. For years, researchers have been developing interfaces, models and algorithms to facilitate search, discovery and organization of email data. In this survey, we attempt to bring together these diverse research directions, and provide both a historical background, as well as a comprehensive overview of the recent advances in the field. In particular, we lay out all the components needed in the design of a privacy-centric email search engine, including search interface, indexing, document and query understanding, retrieval, ranking and evaluation. We also go beyond search, presenting recent work on intelligent task assistance in email. Finally, we discuss some emerging trends and future directions in email search and discovery research.</p>","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"318 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138526312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}