首页 > 最新文献

Foundations and Trends in Information Retrieval最新文献

英文 中文
User Simulation for Evaluating Information Access Systems 评估信息获取系统的用户模拟
IF 10.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-06-12 DOI: 10.1561/1500000098
Krisztian Balog, ChengXiang Zhai

Information access systems, such as search engines, recommendersystems, and conversational assistants, have becomeintegral to our daily lives as they help us satisfy our informationneeds. However, evaluating the effectiveness ofthese systems presents a long-standing and complex scientificchallenge. This challenge is rooted in the difficulty ofassessing a system’s overall effectiveness in assisting usersto complete tasks through interactive support, and furtherexacerbated by the substantial variation in user behaviourand preferences. To address this challenge, user simulationemerges as a promising solution.

This monograph focuses on providing a thorough understandingof user simulation techniques designed specificallyfor evaluation purposes. We begin with a background of informationaccess system evaluation and explore the diverseapplications of user simulation. Subsequently, we systematicallyreview the major research progress in user simulation,covering both general frameworks for designing user simulators,utilizing user simulation for evaluation, and specificmodels and algorithms for simulating user interactions withsearch engines, recommender systems, and conversationalassistants. Realizing that user simulation is an interdisciplinaryresearch topic, whenever possible, we attempt toestablish connections with related fields, including machinelearning, dialogue systems, user modeling, and economics.We end the monograph with a broad discussion of importantfuture research directions, many of which extend beyond theevaluation of information access systems and are expectedto have broader impact on how to evaluate interactive intelligentsystems in general.

信息获取系统,如搜索引擎、推荐系统和对话助手,已经成为我们日常生活中不可或缺的一部分,因为它们能帮助我们满足信息需求。然而,评估这些系统的有效性是一项长期而复杂的科学挑战。这一挑战的根源在于难以评估系统在通过交互支持协助用户完成任务方面的整体有效性,而用户行为和偏好的巨大差异又进一步加剧了这一挑战。为了应对这一挑战,用户模拟成为一种很有前途的解决方案。本专著的重点是全面介绍专为评估目的而设计的用户模拟技术。我们首先介绍了信息访问系统评估的背景,并探讨了用户模拟的各种应用。随后,我们系统地回顾了用户模拟的主要研究进展,包括设计用户模拟器的一般框架、利用用户模拟进行评估,以及模拟用户与搜索引擎、推荐系统和会话助手交互的具体模型和算法。认识到用户模拟是一个跨学科的研究课题,我们尽可能地尝试与相关领域建立联系,包括机器学习、对话系统、用户建模和经济学。
{"title":"User Simulation for Evaluating Information Access Systems","authors":"Krisztian Balog, ChengXiang Zhai","doi":"10.1561/1500000098","DOIUrl":"https://doi.org/10.1561/1500000098","url":null,"abstract":"<p>Information access systems, such as search engines, recommender\u0000systems, and conversational assistants, have become\u0000integral to our daily lives as they help us satisfy our information\u0000needs. However, evaluating the effectiveness of\u0000these systems presents a long-standing and complex scientific\u0000challenge. This challenge is rooted in the difficulty of\u0000assessing a system’s overall effectiveness in assisting users\u0000to complete tasks through interactive support, and further\u0000exacerbated by the substantial variation in user behaviour\u0000and preferences. To address this challenge, user simulation\u0000emerges as a promising solution.<p>This monograph focuses on providing a thorough understanding\u0000of user simulation techniques designed specifically\u0000for evaluation purposes. We begin with a background of information\u0000access system evaluation and explore the diverse\u0000applications of user simulation. Subsequently, we systematically\u0000review the major research progress in user simulation,\u0000covering both general frameworks for designing user simulators,\u0000utilizing user simulation for evaluation, and specific\u0000models and algorithms for simulating user interactions with\u0000search engines, recommender systems, and conversational\u0000assistants. Realizing that user simulation is an interdisciplinary\u0000research topic, whenever possible, we attempt to\u0000establish connections with related fields, including machine\u0000learning, dialogue systems, user modeling, and economics.\u0000We end the monograph with a broad discussion of important\u0000future research directions, many of which extend beyond the\u0000evaluation of information access systems and are expected\u0000to have broader impact on how to evaluate interactive intelligent\u0000systems in general.</p></p>","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"33 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-hop Question Answering 多跳问题解答
IF 10.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-06-12 DOI: 10.1561/1500000102
Vaibhav Mavi, Anubhav Jangra, Jatowt Adam

The task of Question Answering (QA) has attracted significantresearch interest for a long time. Its relevance tolanguage understanding and knowledge retrieval tasks, alongwith the simple setting, makes the task of QA crucial forstrong AI systems. Recent success on simple QA tasks hasshifted the focus to more complex settings. Among these,Multi-Hop QA (MHQA) is one of the most researched tasksover recent years. In broad terms, MHQA is the task of answeringnatural language questions that involve extractingand combining multiple pieces of information and doing multiplesteps of reasoning. An example of a multi-hop questionwould be “The Argentine PGA Championship record holderhas won how many tournaments worldwide?”. Answeringthe question would need two pieces of information: “Who isthe record holder for Argentine PGA Championship tournaments?”and “How many tournaments did [Answer of SubQ1] win?”. The ability to answer multi-hop questions andperform multi step reasoning can significantly improve theutility of NLP systems. Consequently, the field has seen asurge of high quality datasets, models and evaluation strategies.The notion of ‘multiple hops’ is somewhat abstractwhich results in a large variety of tasks that require multihopreasoning. This leads to different datasets and modelsthat differ significantly from each other and make the fieldchallenging to generalize and survey. We aim to provide ageneral and formal definition of the MHQA task, and organizeand summarize existing MHQA frameworks. We alsooutline some best practices for building MHQA datasets.This monograph provides a systematic and thorough introductionas well as the structuring of the existing attemptsto this highly interesting, yet quite challenging task.

长期以来,问题解答(QA)任务一直备受研究关注。它与语言理解和知识检索任务的相关性以及简单的设置,使得 QA 任务对强大的人工智能系统至关重要。最近,在简单的质量保证任务上取得的成功将焦点转移到了更复杂的环境上。其中,多跳 QA(MHQA)是近年来研究最多的任务之一。从广义上讲,MHQA 是回答自然语言问题的任务,这些问题涉及提取和组合多种信息并进行多步推理。多跳问题的一个例子是 "阿根廷 PGA 锦标赛纪录保持者赢得了多少场全球锦标赛?回答这个问题需要两条信息:"阿根廷 PGA 锦标赛纪录保持者是谁?"和"[子问题 1 的答案]赢得了多少场锦标赛?"。回答多跳问题和执行多步推理的能力可以显著提高 NLP 系统的实用性。因此,该领域涌现出了大量高质量的数据集、模型和评估策略。"多跳 "的概念有些抽象,这导致需要多跳推理的任务种类繁多。这导致不同的数据集和模型之间存在很大差异,给该领域的推广和调查带来了挑战。我们的目标是提供 MHQA 任务的一般和正式定义,并整理和总结现有的 MHQA 框架。本专著系统而全面地介绍了这一非常有趣但又颇具挑战性的任务,并对现有的尝试进行了结构化。
{"title":"Multi-hop Question Answering","authors":"Vaibhav Mavi, Anubhav Jangra, Jatowt Adam","doi":"10.1561/1500000102","DOIUrl":"https://doi.org/10.1561/1500000102","url":null,"abstract":"<p>The task of Question Answering (QA) has attracted significant\u0000research interest for a long time. Its relevance to\u0000language understanding and knowledge retrieval tasks, along\u0000with the simple setting, makes the task of QA crucial for\u0000strong AI systems. Recent success on simple QA tasks has\u0000shifted the focus to more complex settings. Among these,\u0000Multi-Hop QA (MHQA) is one of the most researched tasks\u0000over recent years. In broad terms, MHQA is the task of answering\u0000natural language questions that involve extracting\u0000and combining multiple pieces of information and doing multiple\u0000steps of reasoning. An example of a multi-hop question\u0000would be “The Argentine PGA Championship record holder\u0000has won how many tournaments worldwide?”. Answering\u0000the question would need two pieces of information: “Who is\u0000the record holder for Argentine PGA Championship tournaments?”\u0000and “How many tournaments did [Answer of Sub\u0000Q1] win?”. The ability to answer multi-hop questions and\u0000perform multi step reasoning can significantly improve the\u0000utility of NLP systems. Consequently, the field has seen a\u0000surge of high quality datasets, models and evaluation strategies.\u0000The notion of ‘multiple hops’ is somewhat abstract\u0000which results in a large variety of tasks that require multihop\u0000reasoning. This leads to different datasets and models\u0000that differ significantly from each other and make the field\u0000challenging to generalize and survey. We aim to provide a\u0000general and formal definition of the MHQA task, and organize\u0000and summarize existing MHQA frameworks. We also\u0000outline some best practices for building MHQA datasets.\u0000This monograph provides a systematic and thorough introduction\u0000as well as the structuring of the existing attempts\u0000to this highly interesting, yet quite challenging task.</p>","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"44 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conversational Information Seeking 会话信息搜索
IF 10.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-08-02 DOI: 10.1561/1500000081
Hamed Zamani, Johanne R. Trippas, Jeff Dalton, Filip Radlinski

Conversational information seeking (CIS) is concerned with a sequence of interactions between one or more users and an information system. Interactions in CIS are primarily based on natural language dialogue, while they may include other types of interactions, such as click, touch, and body gestures. This monograph provides a thorough overview of CIS definitions, applications, interactions, interfaces, design, implementation, and evaluation. This monograph views CIS applications as including conversational search, conversational question answering, and conversational recommendation. Our aim is to provide an overview of past research related to CIS, introduce the current state-of-the-art in CIS, highlight the challenges still being faced in the community, and suggest future directions.

会话信息搜索(CIS)关注的是一个或多个用户与信息系统之间的一系列交互。CIS中的交互主要基于自然语言对话,同时它们可能包括其他类型的交互,例如点击、触摸和身体手势。这本专著提供了CIS定义、应用程序、交互、接口、设计、实现和评估的全面概述。这本专著认为CIS的应用包括会话搜索、会话问答和会话推荐。我们的目的是概述过去与CIS相关的研究,介绍当前在CIS中的最新技术,强调社区仍然面临的挑战,并建议未来的方向。
{"title":"Conversational Information Seeking","authors":"Hamed Zamani, Johanne R. Trippas, Jeff Dalton, Filip Radlinski","doi":"10.1561/1500000081","DOIUrl":"https://doi.org/10.1561/1500000081","url":null,"abstract":"<p>Conversational information seeking (CIS) is concerned with a sequence of interactions between one or more users and an information system. Interactions in CIS are primarily based on natural language dialogue, while they may include other types of interactions, such as click, touch, and body gestures. This monograph provides a thorough overview of CIS definitions, applications, interactions, interfaces, design, implementation, and evaluation. This monograph views CIS applications as including conversational search, conversational question answering, and conversational recommendation. Our aim is to provide an overview of past research related to CIS, introduce the current state-of-the-art in CIS, highlight the challenges still being faced in the community, and suggest future directions.</p>","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"8 31","pages":""},"PeriodicalIF":10.4,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49696574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 49
Perspectives of Neurodiverse Participants in Interactive Information Retrieval 交互信息检索中神经多样性参与者的观点
IF 10.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-07-26 DOI: 10.1561/1500000086
Laurianne Sitbon, Gerd Berget, Margot Brereton

This monograph offers a survey of work to date to inform how interactions in information retrieval systems could afford inclusion of users who are neurodiverse. This existing work is positioned within a range of philosophies, frameworks and epistemologies which frame the importance of including neurodiverse users in all stages of research and development of Interactive Information Retrieval (IIR) systems. The monograph also offers examples and practical approaches to include neurodiverse users in IIR research, and explores the challenges ahead in the field.

本专著提供了工作的调查到目前为止,告知如何在信息检索系统的交互可以负担得起谁是神经多样性的用户包括。这项现有的工作定位于一系列哲学、框架和认识论,这些哲学、框架和认识论构成了在交互式信息检索(IIR)系统研究和开发的所有阶段包括神经多样性用户的重要性。该专著还提供了包括神经多样性用户在IIR研究中的例子和实用方法,并探讨了该领域未来的挑战。
{"title":"Perspectives of Neurodiverse Participants in Interactive Information Retrieval","authors":"Laurianne Sitbon, Gerd Berget, Margot Brereton","doi":"10.1561/1500000086","DOIUrl":"https://doi.org/10.1561/1500000086","url":null,"abstract":"<p>This monograph offers a survey of work to date to inform how interactions in information retrieval systems could afford inclusion of users who are neurodiverse. This existing work is positioned within a range of philosophies, frameworks and epistemologies which frame the importance of including neurodiverse users in all stages of research and development of Interactive Information Retrieval (IIR) systems. The monograph also offers examples and practical approaches to include neurodiverse users in IIR research, and explores the challenges ahead in the field.</p>","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"21 4","pages":""},"PeriodicalIF":10.4,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49696873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient and Effective Tree-based and Neural Learning to Rank 高效的基于树和神经学习的排名
IF 10.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-05-14 DOI: 10.1561/1500000071
Sebastian Bruch, Claudio Lucchese, Franco Maria Nardini

As information retrieval researchers, we not only develop algorithmic solutions to hard problems, but we also insist on a proper, multifaceted evaluation of ideas. The literature on the fundamental topic of retrieval and ranking, for instance, has a rich history of studying the effectiveness of indexes, retrieval algorithms, and complex machine learning rankers, while at the same time quantifying their computational costs, from creation and training to application and inference. This is evidenced, for example, by more than a decade of research on efficient training and inference of large decision forest models in Learning to Rank (LtR). As we move towards even more complex, deep learning models in a wide range of applications, questions on efficiency have once again resurfaced with renewed urgency. Indeed, efficiency is no longer limited to time and space; instead it has found new, challenging dimensions that stretch to resource-, sample- and energy-efficiency with ramifications for researchers, users, and the environment.

This monograph takes a step towards promoting the study of efficiency in the era of neural information retrieval by offering a comprehensive survey of the literature on efficiency and effectiveness in ranking, and to a limited extent, retrieval. This monograph was inspired by the parallels that exist between the challenges in neural network-based ranking solutions and their predecessors, decision forest-based LtR models, as well as the connections between the solutions the literature to date has to offer. We believe that by understanding the fundamentals underpinning these algorithmic and data structure solutions for containing the contentious relationship between efficiency and effectiveness, one can better identify future directions and more efficiently determine the merits of ideas. We also present what we believe to be important research directions in the forefront of efficiency and effectiveness in retrieval and ranking.

作为信息检索研究人员,我们不仅开发解决难题的算法,而且还坚持对思想进行适当的、多方面的评估。例如,关于检索和排名这一基本主题的文献,在研究索引、检索算法和复杂机器学习排名器的有效性方面有着丰富的历史,同时量化它们的计算成本,从创建和训练到应用和推理。例如,十多年来对学习排序(LtR)中大型决策森林模型的有效训练和推理的研究证明了这一点。随着我们在更广泛的应用中向更复杂的深度学习模型迈进,效率问题再次以新的紧迫性重新浮出水面。事实上,效率不再局限于时间和空间;相反,它发现了新的、具有挑战性的维度,延伸到资源、样本和能源效率,对研究人员、用户和环境产生影响。本专著采取了一个步骤,以促进效率的研究在神经信息检索的时代,提供了一个全面的调查文献效率和有效性的排名,并在有限的程度上,检索。这本专著的灵感来自于基于神经网络的排名解决方案与其前身,基于决策森林的LtR模型的挑战之间存在的相似之处,以及迄今为止文献中所提供的解决方案之间的联系。我们相信,通过理解这些算法和数据结构解决方案的基础,以包含效率和有效性之间有争议的关系,人们可以更好地确定未来的方向,更有效地确定想法的优点。我们还提出了我们认为在检索和排名的效率和有效性方面的重要研究方向。
{"title":"Efficient and Effective Tree-based and Neural Learning to Rank","authors":"Sebastian Bruch, Claudio Lucchese, Franco Maria Nardini","doi":"10.1561/1500000071","DOIUrl":"https://doi.org/10.1561/1500000071","url":null,"abstract":"<p>As information retrieval researchers, we not only develop algorithmic solutions to hard problems, but we also insist on a proper, multifaceted evaluation of ideas. The literature on the fundamental topic of retrieval and ranking, for instance, has a rich history of studying the effectiveness of indexes, retrieval algorithms, and complex machine learning rankers, while at the same time quantifying their computational costs, from creation and training to application and inference. This is evidenced, for example, by more than a decade of research on efficient training and inference of large decision forest models in Learning to Rank (LtR). As we move towards even more complex, deep learning models in a wide range of applications, questions on efficiency have once again resurfaced with renewed urgency. Indeed, efficiency is no longer limited to time and space; instead it has found new, challenging dimensions that stretch to resource-, sample- and energy-efficiency with ramifications for researchers, users, and the environment.<p>This monograph takes a step towards promoting the study of efficiency in the era of neural information retrieval by offering a comprehensive survey of the literature on efficiency and effectiveness in ranking, and to a limited extent, retrieval. This monograph was inspired by the parallels that exist between the challenges in neural network-based ranking solutions and their predecessors, decision forest-based LtR models, as well as the connections between the solutions the literature to date has to offer. We believe that by understanding the fundamentals underpinning these algorithmic and data structure solutions for containing the contentious relationship between efficiency and effectiveness, one can better identify future directions and more efficiently determine the merits of ideas. We also present what we believe to be important research directions in the forefront of efficiency and effectiveness in retrieval and ranking.</p></p>","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"72 4","pages":""},"PeriodicalIF":10.4,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49697987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Quantum-Inspired Neural Language Representation, Matching and Understanding 量子启发的神经语言表示、匹配和理解
IF 10.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-04-18 DOI: 10.1561/1500000091
Peng Zhang, Hui Gao, Jing Zhang, Dawei Song

The introduction of Quantum Theory (QT) provides a unified mathematical framework for Information Retrieval (IR). Compared with the classical IR framework, the quantuminspired IR framework is based on user-centered modeling methods to model non-classical cognitive phenomena in human relevance judgment in the IR process. With the increase of data and computing resources, neural IR methods have been applied to the text matching and understanding task of IR. Neural networks have a strong learning ability of effective representation and generalization of matching patterns from raw data. However, these methods show some unavoidable defects, such as the inability to model user cognitive phenomena, large number of model parameters and the “black box” characteristics of network structure. These problems greatly limit the development of neural IR and related fields. Although the quantum-inspired retrieval framework can theoretically solve the above problems, it is faced with problems such as poor model efficiency and difficulty in integrating with neural network, which lead to a huge gap between QT and neural network modeling.

This review gives a systematic introduction to quantuminspired neural IR, including quantum-inspired neural language representation, matching and understanding. This is not only helpful to non-classical phenomena modeling in IR but also to break the theoretical bottleneck of neural networks and design more transparent neural IR models. We introduce the language representation method based on QT and the quantum-inspired text matching and decision making model under neural network, which shows its theoretical advantages in document ranking, relevance matching, multimodal IR, and can be integrated with neural networks to jointly promote the development of IR. The latest progress of quantum language understanding is introduced and further topics on QT and language modeling provide readers with more materials for thinking.

量子理论(QT)的引入为信息检索(IR)提供了统一的数学框架。与经典红外框架相比,量子启发红外框架基于以用户为中心的建模方法,对红外过程中人类关联判断中的非经典认知现象进行建模。随着数据量和计算资源的增加,神经红外方法已被应用于红外文本的匹配和理解任务。神经网络具有较强的学习能力,可以从原始数据中有效地表示和泛化匹配模式。然而,这些方法存在一些不可避免的缺陷,如无法对用户认知现象进行建模、模型参数过多、网络结构的“黑箱”特征等。这些问题极大地限制了神经红外及其相关领域的发展。虽然量子启发检索框架理论上可以解决上述问题,但它面临着模型效率差、难以与神经网络集成等问题,导致QT与神经网络建模存在巨大差距。本文系统地介绍了量子启发神经红外,包括量子启发神经语言表示、匹配和理解。这不仅有助于红外中的非经典现象建模,而且有助于突破神经网络的理论瓶颈,设计出更加透明的神经红外模型。本文介绍了基于QT的语言表示方法和神经网络下的量子启发文本匹配与决策模型,在文档排序、关联匹配、多模态IR等方面显示了其理论优势,并可与神经网络相结合,共同推动IR的发展。介绍了量子语言理解的最新进展,并进一步介绍了QT和语言建模的主题,为读者提供了更多的思考材料。
{"title":"Quantum-Inspired Neural Language Representation, Matching and Understanding","authors":"Peng Zhang, Hui Gao, Jing Zhang, Dawei Song","doi":"10.1561/1500000091","DOIUrl":"https://doi.org/10.1561/1500000091","url":null,"abstract":"<p>The introduction of Quantum Theory (QT) provides a unified mathematical framework for Information Retrieval (IR). Compared with the classical IR framework, the quantuminspired IR framework is based on user-centered modeling methods to model non-classical cognitive phenomena in human relevance judgment in the IR process. With the increase of data and computing resources, neural IR methods have been applied to the text matching and understanding task of IR. Neural networks have a strong learning ability of effective representation and generalization of matching patterns from raw data. However, these methods show some unavoidable defects, such as the inability to model user cognitive phenomena, large number of model parameters and the “black box” characteristics of network structure. These problems greatly limit the development of neural IR and related fields. Although the quantum-inspired retrieval framework can theoretically solve the above problems, it is faced with problems such as poor model efficiency and difficulty in integrating with neural network, which lead to a huge gap between QT and neural network modeling.<p>This review gives a systematic introduction to quantuminspired neural IR, including quantum-inspired neural language representation, matching and understanding. This is not only helpful to non-classical phenomena modeling in IR but also to break the theoretical bottleneck of neural networks and design more transparent neural IR models. We introduce the language representation method based on QT and the quantum-inspired text matching and decision making model under neural network, which shows its theoretical advantages in document ranking, relevance matching, multimodal IR, and can be integrated with neural networks to jointly promote the development of IR. The latest progress of quantum language understanding is introduced and further topics on QT and language modeling provide readers with more materials for thinking.</p></p>","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"54 45","pages":""},"PeriodicalIF":10.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49698420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Deep Learning for Dialogue Systems: Chit-Chat and Beyond 对话系统的深度学习:闲聊和超越
IF 10.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-01-01 DOI: 10.1561/1500000083
Rui Yan, Juntao Li, Zhou Yu
Recommendation, information retrieval, and other information access systems pose unique challenges for investigating and applying the fairness and non-discrimination concepts that have been developed for studying other machine learning systems. While fair information access shares many commonalities with fair classification, there are important differences: the multistakeholder nature of information access applications, the rank-based problem setting, the centrality of personalization in many cases, and the role of user response all complicate the problem of identifying precisely what types and operationalizations of fairness may be relevant. In this monograph, we present a taxonomy of the various dimensions of fair information access and survey the literature to date on this new and rapidly-growing topic. We Michael D. Ekstrand, Anubrata Das, Robin Burke and Fernando Diaz (2022), “Fairness in Information Access Systems”, Foundations and Trends® in Information Retrieval: Vol. 16, No. 1-2, pp 1–177. DOI: 10.1561/1500000079. ©2022 M. D. Ekstrand et al. Full text available at: http://dx.doi.org/10.1561/1500000079
推荐、信息检索和其他信息访问系统对调查和应用公平和非歧视概念提出了独特的挑战,这些概念已经为研究其他机器学习系统而开发。虽然公平的信息访问与公平的分类有许多共同点,但也有重要的区别:信息访问应用的多利益相关者性质、基于排名的问题设置、在许多情况下个性化的中心地位以及用户响应的作用,所有这些都使准确识别公平的类型和操作可能相关的问题复杂化。在这本专著中,我们提出了公平信息获取的各个维度的分类,并调查了迄今为止关于这个新的和快速增长的主题的文献。我们Michael D. Ekstrand, Anubrata Das, Robin Burke和Fernando Diaz(2022),“信息获取系统的公平性”,《信息检索的基础与趋势》,第16卷第1-2期,第1-177页。DOI: 10.1561 / 1500000079。©2022 M. D. Ekstrand等。全文可在:http://dx.doi.org/10.1561/1500000079
{"title":"Deep Learning for Dialogue Systems: Chit-Chat and Beyond","authors":"Rui Yan, Juntao Li, Zhou Yu","doi":"10.1561/1500000083","DOIUrl":"https://doi.org/10.1561/1500000083","url":null,"abstract":"Recommendation, information retrieval, and other information access systems pose unique challenges for investigating and applying the fairness and non-discrimination concepts that have been developed for studying other machine learning systems. While fair information access shares many commonalities with fair classification, there are important differences: the multistakeholder nature of information access applications, the rank-based problem setting, the centrality of personalization in many cases, and the role of user response all complicate the problem of identifying precisely what types and operationalizations of fairness may be relevant. In this monograph, we present a taxonomy of the various dimensions of fair information access and survey the literature to date on this new and rapidly-growing topic. We Michael D. Ekstrand, Anubrata Das, Robin Burke and Fernando Diaz (2022), “Fairness in Information Access Systems”, Foundations and Trends® in Information Retrieval: Vol. 16, No. 1-2, pp 1–177. DOI: 10.1561/1500000079. ©2022 M. D. Ekstrand et al. Full text available at: http://dx.doi.org/10.1561/1500000079","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"19 1","pages":"417-589"},"PeriodicalIF":10.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72783210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Pre-training Methods in Information Retrieval 信息检索中的预训练方法
IF 10.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-01-01 DOI: 10.1561/1500000100
Yixing Fan, Xiaohui Xie, Yinqiong Cai, Jia Chen, Xinyv Ma, Xiangsheng Li, Ruqing Zhang, Jiafeng Guo
{"title":"Pre-training Methods in Information Retrieval","authors":"Yixing Fan, Xiaohui Xie, Yinqiong Cai, Jia Chen, Xinyv Ma, Xiangsheng Li, Ruqing Zhang, Jiafeng Guo","doi":"10.1561/1500000100","DOIUrl":"https://doi.org/10.1561/1500000100","url":null,"abstract":"","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"29 1","pages":"178-317"},"PeriodicalIF":10.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74908117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Psychology-informed Recommender Systems 基于心理学的推荐系统
IF 10.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2021-12-06 DOI: 10.1561/1500000090
E. Lex, Dominik Kowald, Paul Seitlinger, Thi Ngoc Trang Tran, A. Felfernig, M. Schedl
Personalized recommender systems have become indispensable in today’s online world. Most of today’s recommendation algorithms are data-driven and based on behavioral data. While such systems can produce useful recommendations, they are often uninterpretable, black-box models, which do not incorporate the underlying cognitive reasons for user behavior in the algorithms’ design. The aim of this survey is to present a thorough review of the state of the art of recommender systems that leverage psychological constructs and theories to model and predict user behavior and improve the recommendation process. We call such systems psychology-informed recommender systems. The survey identifies three categories of psychology-informed recommender systems: cognition-inspired, personality-aware, and affectaware recommender systems. Moreover, for each category, Elisabeth Lex, Dominik Kowald, Paul Seitlinger, Thi Ngoc Trang Tran, Alexander Felfernig and Markus Schedl (2021), “Psychology-informed Recommender Systems”, Foundations and Trends® in Information Retrieval: Vol. 15, No. 2, pp 134–242. DOI: 10.1561/1500000090. Full text available at: http://dx.doi.org/10.1561/1500000090
个性化推荐系统在当今的网络世界中已经不可或缺。今天的大多数推荐算法都是数据驱动的,基于行为数据。虽然这样的系统可以产生有用的建议,但它们通常是不可解释的黑箱模型,没有在算法设计中纳入用户行为的潜在认知原因。本调查的目的是对推荐系统的现状进行全面的回顾,这些系统利用心理学结构和理论来建模和预测用户行为,并改进推荐过程。我们称这种系统为基于心理的推荐系统。该调查确定了三类基于心理学的推荐系统:认知启发型、个性感知型和情感感知型推荐系统。此外,对于每个类别,Elisabeth Lex, Dominik Kowald, Paul Seitlinger, Thi Ngoc Trang Tran, Alexander felferning和Markus Schedl(2021),“心理通知推荐系统”,信息检索的基础和趋势®:第15卷,第2期,第134-242页。DOI: 10.1561 / 1500000090。全文可在:http://dx.doi.org/10.1561/1500000090
{"title":"Psychology-informed Recommender Systems","authors":"E. Lex, Dominik Kowald, Paul Seitlinger, Thi Ngoc Trang Tran, A. Felfernig, M. Schedl","doi":"10.1561/1500000090","DOIUrl":"https://doi.org/10.1561/1500000090","url":null,"abstract":"Personalized recommender systems have become indispensable in today’s online world. Most of today’s recommendation algorithms are data-driven and based on behavioral data. While such systems can produce useful recommendations, they are often uninterpretable, black-box models, which do not incorporate the underlying cognitive reasons for user behavior in the algorithms’ design. The aim of this survey is to present a thorough review of the state of the art of recommender systems that leverage psychological constructs and theories to model and predict user behavior and improve the recommendation process. We call such systems psychology-informed recommender systems. The survey identifies three categories of psychology-informed recommender systems: cognition-inspired, personality-aware, and affectaware recommender systems. Moreover, for each category, Elisabeth Lex, Dominik Kowald, Paul Seitlinger, Thi Ngoc Trang Tran, Alexander Felfernig and Markus Schedl (2021), “Psychology-informed Recommender Systems”, Foundations and Trends® in Information Retrieval: Vol. 15, No. 2, pp 134–242. DOI: 10.1561/1500000090. Full text available at: http://dx.doi.org/10.1561/1500000090","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"10 1","pages":"134-242"},"PeriodicalIF":10.4,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87436257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 32
Search and Discovery in Personal Email Collections 搜索和发现在个人电子邮件收藏
IF 10.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2021-07-05 DOI: 10.1561/1500000069
Michael Bendersky, Xuanhui Wang, Marc Najork, Donald Metzler

Email has been an essential communication medium for many years. As a result, the information accumulated in our mailboxes has become valuable for all of our personal and professional activities. For years, researchers have been developing interfaces, models and algorithms to facilitate search, discovery and organization of email data. In this survey, we attempt to bring together these diverse research directions, and provide both a historical background, as well as a comprehensive overview of the recent advances in the field. In particular, we lay out all the components needed in the design of a privacy-centric email search engine, including search interface, indexing, document and query understanding, retrieval, ranking and evaluation. We also go beyond search, presenting recent work on intelligent task assistance in email. Finally, we discuss some emerging trends and future directions in email search and discovery research.

多年来,电子邮件一直是一种重要的沟通媒介。因此,我们邮箱里积累的信息对我们所有的个人和职业活动都变得很有价值。多年来,研究人员一直在开发接口、模型和算法,以促进电子邮件数据的搜索、发现和组织。在本调查中,我们试图汇集这些不同的研究方向,并提供历史背景,以及该领域最新进展的全面概述。特别是,我们列出了设计一个以隐私为中心的电子邮件搜索引擎所需的所有组件,包括搜索界面、索引、文档和查询理解、检索、排名和评估。我们也超越了搜索,展示了最近在电子邮件中的智能任务协助方面的工作。最后,我们讨论了电子邮件搜索和发现研究的一些新趋势和未来方向。
{"title":"Search and Discovery in Personal Email Collections","authors":"Michael Bendersky, Xuanhui Wang, Marc Najork, Donald Metzler","doi":"10.1561/1500000069","DOIUrl":"https://doi.org/10.1561/1500000069","url":null,"abstract":"<p>Email has been an essential communication medium for many years. As a result, the information accumulated in our mailboxes has become valuable for all of our personal and professional activities. For years, researchers have been developing interfaces, models and algorithms to facilitate search, discovery and organization of email data. In this survey, we attempt to bring together these diverse research directions, and provide both a historical background, as well as a comprehensive overview of the recent advances in the field. In particular, we lay out all the components needed in the design of a privacy-centric email search engine, including search interface, indexing, document and query understanding, retrieval, ranking and evaluation. We also go beyond search, presenting recent work on intelligent task assistance in email. Finally, we discuss some emerging trends and future directions in email search and discovery research.</p>","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"318 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138526312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Foundations and Trends in Information Retrieval
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1