Jorge López-Moreno, V. Sundstedt, Francisco Sangorrin, D. Gutierrez
{"title":"测量对光线不一致的感知","authors":"Jorge López-Moreno, V. Sundstedt, Francisco Sangorrin, D. Gutierrez","doi":"10.1145/1836248.1836252","DOIUrl":null,"url":null,"abstract":"In this paper we explore the ability of the human visual system to detect inconsistencies in the illumination of objects in images. We specifically focus on objects being lit from different angles as the rest of the image. We present the results of three different tests, two with synthetic objects and a third one with digitally manipulated real images. Our results seem to agree with previous publications exploring the topic, but we extend them by providing quantifiable data which in turn suggest approximate perceptual thresholds. Given that light detection in single images is an ill-posed problem, these thresholds can provide valid error limits to related algorithms in different contexts, such as compositing or augmented reality.","PeriodicalId":89458,"journal":{"name":"Proceedings APGV : ... Symposium on Applied Perception in Graphics and Visualization. Symposium on Applied Perception in Graphics and Visualization","volume":"22 1","pages":"25-32"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Measuring the perception of light inconsistencies\",\"authors\":\"Jorge López-Moreno, V. Sundstedt, Francisco Sangorrin, D. Gutierrez\",\"doi\":\"10.1145/1836248.1836252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we explore the ability of the human visual system to detect inconsistencies in the illumination of objects in images. We specifically focus on objects being lit from different angles as the rest of the image. We present the results of three different tests, two with synthetic objects and a third one with digitally manipulated real images. Our results seem to agree with previous publications exploring the topic, but we extend them by providing quantifiable data which in turn suggest approximate perceptual thresholds. Given that light detection in single images is an ill-posed problem, these thresholds can provide valid error limits to related algorithms in different contexts, such as compositing or augmented reality.\",\"PeriodicalId\":89458,\"journal\":{\"name\":\"Proceedings APGV : ... Symposium on Applied Perception in Graphics and Visualization. Symposium on Applied Perception in Graphics and Visualization\",\"volume\":\"22 1\",\"pages\":\"25-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings APGV : ... Symposium on Applied Perception in Graphics and Visualization. Symposium on Applied Perception in Graphics and Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1836248.1836252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings APGV : ... Symposium on Applied Perception in Graphics and Visualization. Symposium on Applied Perception in Graphics and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1836248.1836252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we explore the ability of the human visual system to detect inconsistencies in the illumination of objects in images. We specifically focus on objects being lit from different angles as the rest of the image. We present the results of three different tests, two with synthetic objects and a third one with digitally manipulated real images. Our results seem to agree with previous publications exploring the topic, but we extend them by providing quantifiable data which in turn suggest approximate perceptual thresholds. Given that light detection in single images is an ill-posed problem, these thresholds can provide valid error limits to related algorithms in different contexts, such as compositing or augmented reality.