{"title":"在色度约束下的边色图分解","authors":"S. Fujita, Ruonan Li, Guanghui Wang","doi":"10.1017/S0963548319000014","DOIUrl":null,"url":null,"abstract":"Abstract For an edge-coloured graph G, the minimum colour degree of G means the minimum number of colours on edges which are incident to each vertex of G. We prove that if G is an edge-coloured graph with minimum colour degree at least 5, then V(G) can be partitioned into two parts such that each part induces a subgraph with minimum colour degree at least 2. We show this theorem by proving amuch stronger form. Moreover, we point out an important relationship between our theorem and Bermond and Thomassen’s conjecture in digraphs.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"22 1","pages":"755 - 767"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Decomposing edge-coloured graphs under colour degree constraints\",\"authors\":\"S. Fujita, Ruonan Li, Guanghui Wang\",\"doi\":\"10.1017/S0963548319000014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For an edge-coloured graph G, the minimum colour degree of G means the minimum number of colours on edges which are incident to each vertex of G. We prove that if G is an edge-coloured graph with minimum colour degree at least 5, then V(G) can be partitioned into two parts such that each part induces a subgraph with minimum colour degree at least 2. We show this theorem by proving amuch stronger form. Moreover, we point out an important relationship between our theorem and Bermond and Thomassen’s conjecture in digraphs.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":\"22 1\",\"pages\":\"755 - 767\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S0963548319000014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548319000014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decomposing edge-coloured graphs under colour degree constraints
Abstract For an edge-coloured graph G, the minimum colour degree of G means the minimum number of colours on edges which are incident to each vertex of G. We prove that if G is an edge-coloured graph with minimum colour degree at least 5, then V(G) can be partitioned into two parts such that each part induces a subgraph with minimum colour degree at least 2. We show this theorem by proving amuch stronger form. Moreover, we point out an important relationship between our theorem and Bermond and Thomassen’s conjecture in digraphs.