鼠标跟踪使用YOLO算法

H. M. Peixoto, R. Menezes, John Victor Alves Luiz, A. M. Henriques-Alves, Rossana Moreno Santa Cruz
{"title":"鼠标跟踪使用YOLO算法","authors":"H. M. Peixoto, R. Menezes, John Victor Alves Luiz, A. M. Henriques-Alves, Rossana Moreno Santa Cruz","doi":"10.7287/PEERJ.PREPRINTS.27880V1","DOIUrl":null,"url":null,"abstract":"The computational tool developed in this study is based on convolutional neural networks and the You Only Look Once (YOLO) algorithm for detecting and tracking mice in videos recorded during behavioral neuroscience experiments. We analyzed a set of data composed of 13622 images, made up of behavioral videos of three important researches in this area. The training set used 50% of the images, 25% for validation, and 25% for the tests. The results show that the mean Average Precision (mAP) reached by the developed system was 90.79% and 90.75% for the Full and Tiny versions of YOLO, respectively. Considering the high accuracy of the results, the developed work allows the experimentalists to perform mice tracking in a reliable and non-evasive way.","PeriodicalId":93040,"journal":{"name":"PeerJ preprints","volume":"118 1","pages":"e27880"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Mice tracking using the YOLO algorithm\",\"authors\":\"H. M. Peixoto, R. Menezes, John Victor Alves Luiz, A. M. Henriques-Alves, Rossana Moreno Santa Cruz\",\"doi\":\"10.7287/PEERJ.PREPRINTS.27880V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The computational tool developed in this study is based on convolutional neural networks and the You Only Look Once (YOLO) algorithm for detecting and tracking mice in videos recorded during behavioral neuroscience experiments. We analyzed a set of data composed of 13622 images, made up of behavioral videos of three important researches in this area. The training set used 50% of the images, 25% for validation, and 25% for the tests. The results show that the mean Average Precision (mAP) reached by the developed system was 90.79% and 90.75% for the Full and Tiny versions of YOLO, respectively. Considering the high accuracy of the results, the developed work allows the experimentalists to perform mice tracking in a reliable and non-evasive way.\",\"PeriodicalId\":93040,\"journal\":{\"name\":\"PeerJ preprints\",\"volume\":\"118 1\",\"pages\":\"e27880\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ preprints\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7287/PEERJ.PREPRINTS.27880V1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ preprints","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7287/PEERJ.PREPRINTS.27880V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本研究开发的计算工具基于卷积神经网络和You Only Look Once (YOLO)算法,用于在行为神经科学实验中记录的视频中检测和跟踪小鼠。我们分析了一组由13622张图像组成的数据,这些图像由该领域三个重要研究的行为视频组成。训练集使用50%的图像,25%用于验证,25%用于测试。结果表明,该系统对全版和小版YOLO的平均精度(mAP)分别为90.79%和90.75%。考虑到结果的高准确性,开发的工作使实验人员能够以可靠和无规避的方式进行小鼠跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mice tracking using the YOLO algorithm
The computational tool developed in this study is based on convolutional neural networks and the You Only Look Once (YOLO) algorithm for detecting and tracking mice in videos recorded during behavioral neuroscience experiments. We analyzed a set of data composed of 13622 images, made up of behavioral videos of three important researches in this area. The training set used 50% of the images, 25% for validation, and 25% for the tests. The results show that the mean Average Precision (mAP) reached by the developed system was 90.79% and 90.75% for the Full and Tiny versions of YOLO, respectively. Considering the high accuracy of the results, the developed work allows the experimentalists to perform mice tracking in a reliable and non-evasive way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A framework for designing compassionate and ethical artificial intelligence and artificial consciousness Time series event correlation with DTW and Hierarchical Clustering methods Securing ad hoc on-demand distance vector routing protocol against the black hole DoS attack in MANETs 12 Grand Challenges in Single-Cell Data Science Mice tracking using the YOLO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1