N. Ivanova, Viliana Gugleva, Mirena Dobreva, I. Pehlivanov, S. Stefanov, V. Andonova
{"title":"纳米银作为多功能给药系统","authors":"N. Ivanova, Viliana Gugleva, Mirena Dobreva, I. Pehlivanov, S. Stefanov, V. Andonova","doi":"10.5772/INTECHOPEN.80238","DOIUrl":null,"url":null,"abstract":"Nanoparticles can surmount some essential problems of conventional small molecules or biomacromolecules (e.g., DNA, RNA, and protein) used in some diseases by allowing targeted delivery and overcome through biological barriers. Recently, silver nanopar- ticles have been harnessed as delivery vehicles for therapeutic agents, including antisense oligonucleotides, and other small molecules. Silver is the most profit-oriented precious metal used in the preparation of nanoparticles and nanomaterials because of its antibacterial, antiviral, antifungal, antioxidant and unusually enhanced physicochemi- cal properties compared to the bulk material such as optical, thermal, electrical, and catalytic properties. Small silver nanoparticles offer many advantages as drug carriers, including adjustable size and shape, enhanced stability of surface-bound nucleic acids, high-density surface ligand attachment, transmembrane delivery without harsh trans - fection agents, protection of the attached therapeutics from degradation, and potential for improved timed/controlled intracellular drug-delivery. Plant-mediated synthesis of silver nanoparticles is gaining interest due to its inexpensiveness, providing a healthier work environment, and protecting human health leading to lessening waste and safer products. The chapter presents the essential physicochemical characteristics, antibacterial, and anticancer properties which silver nanoparticles obtained by plant-mediated methods possess, and their application as drug-delivery systems with a critical view on the possible toxicity on the human body.","PeriodicalId":18882,"journal":{"name":"Nanomedicines","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":"{\"title\":\"Silver Nanoparticles as Multi-Functional Drug Delivery Systems\",\"authors\":\"N. Ivanova, Viliana Gugleva, Mirena Dobreva, I. Pehlivanov, S. Stefanov, V. Andonova\",\"doi\":\"10.5772/INTECHOPEN.80238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoparticles can surmount some essential problems of conventional small molecules or biomacromolecules (e.g., DNA, RNA, and protein) used in some diseases by allowing targeted delivery and overcome through biological barriers. Recently, silver nanopar- ticles have been harnessed as delivery vehicles for therapeutic agents, including antisense oligonucleotides, and other small molecules. Silver is the most profit-oriented precious metal used in the preparation of nanoparticles and nanomaterials because of its antibacterial, antiviral, antifungal, antioxidant and unusually enhanced physicochemi- cal properties compared to the bulk material such as optical, thermal, electrical, and catalytic properties. Small silver nanoparticles offer many advantages as drug carriers, including adjustable size and shape, enhanced stability of surface-bound nucleic acids, high-density surface ligand attachment, transmembrane delivery without harsh trans - fection agents, protection of the attached therapeutics from degradation, and potential for improved timed/controlled intracellular drug-delivery. Plant-mediated synthesis of silver nanoparticles is gaining interest due to its inexpensiveness, providing a healthier work environment, and protecting human health leading to lessening waste and safer products. The chapter presents the essential physicochemical characteristics, antibacterial, and anticancer properties which silver nanoparticles obtained by plant-mediated methods possess, and their application as drug-delivery systems with a critical view on the possible toxicity on the human body.\",\"PeriodicalId\":18882,\"journal\":{\"name\":\"Nanomedicines\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.80238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.80238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Silver Nanoparticles as Multi-Functional Drug Delivery Systems
Nanoparticles can surmount some essential problems of conventional small molecules or biomacromolecules (e.g., DNA, RNA, and protein) used in some diseases by allowing targeted delivery and overcome through biological barriers. Recently, silver nanopar- ticles have been harnessed as delivery vehicles for therapeutic agents, including antisense oligonucleotides, and other small molecules. Silver is the most profit-oriented precious metal used in the preparation of nanoparticles and nanomaterials because of its antibacterial, antiviral, antifungal, antioxidant and unusually enhanced physicochemi- cal properties compared to the bulk material such as optical, thermal, electrical, and catalytic properties. Small silver nanoparticles offer many advantages as drug carriers, including adjustable size and shape, enhanced stability of surface-bound nucleic acids, high-density surface ligand attachment, transmembrane delivery without harsh trans - fection agents, protection of the attached therapeutics from degradation, and potential for improved timed/controlled intracellular drug-delivery. Plant-mediated synthesis of silver nanoparticles is gaining interest due to its inexpensiveness, providing a healthier work environment, and protecting human health leading to lessening waste and safer products. The chapter presents the essential physicochemical characteristics, antibacterial, and anticancer properties which silver nanoparticles obtained by plant-mediated methods possess, and their application as drug-delivery systems with a critical view on the possible toxicity on the human body.