{"title":"自由浮动共享单车系统的动态再平衡策略:轨道队列与双边匹配","authors":"Zhi Pei, Xu Dai, Tianzong Yu, Lu Zhao, Qiaochu He","doi":"10.1287/serv.2021.0287","DOIUrl":null,"url":null,"abstract":"In populous metropolitan areas, the free-floating bicycle-sharing system (FFBSS) acts as an innovative urban mobility as a service, which provides an ease-of-use feature and extra flexibility in contrast to the traditional shared bicycles with docks. In consideration of customer behaviors, such as abandonment and retrial, which occur in FFBSS, a redistribution strategy for shared bicycles among different user-density locations is presented with an aim to diminish the total operational cost while enhancing the overall service level. To formulate the user and multitype shared bicycle–arrival patterns as nonhomogeneous queues, our results provide a tractable analytical paradigm for a time-varying balancing strategy for FFBSS. The bicycle variation at each virtual zone after each redistribution is determined via a nonstationary queueing model, in which the service time, patience time, and research delay are all subject to general distribution. Then, the bicycle-deployment strategy is evaluated with respect to average queueing length and abandonment rate during a normal workday based on a tailored nonhomogeneous probabilistic matching queue. To verify the efficacy and cost-effectiveness of the proposed bicycle-redistribution strategy, multiple simulation runs are conducted with respect to various times of the day. It shows that the resulting optimal rebalancing strategy is batch-based in synchrony with the time heterogeneity in the traffic demand. Furthermore, several managerial insights are provided to shed light on the rule of thumb in practical FFBSS redistribution coordination.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamic Rebalancing Strategy in Free-Float Bicycle Sharing Systems: Orbit Queues and Two-Sided Matching\",\"authors\":\"Zhi Pei, Xu Dai, Tianzong Yu, Lu Zhao, Qiaochu He\",\"doi\":\"10.1287/serv.2021.0287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In populous metropolitan areas, the free-floating bicycle-sharing system (FFBSS) acts as an innovative urban mobility as a service, which provides an ease-of-use feature and extra flexibility in contrast to the traditional shared bicycles with docks. In consideration of customer behaviors, such as abandonment and retrial, which occur in FFBSS, a redistribution strategy for shared bicycles among different user-density locations is presented with an aim to diminish the total operational cost while enhancing the overall service level. To formulate the user and multitype shared bicycle–arrival patterns as nonhomogeneous queues, our results provide a tractable analytical paradigm for a time-varying balancing strategy for FFBSS. The bicycle variation at each virtual zone after each redistribution is determined via a nonstationary queueing model, in which the service time, patience time, and research delay are all subject to general distribution. Then, the bicycle-deployment strategy is evaluated with respect to average queueing length and abandonment rate during a normal workday based on a tailored nonhomogeneous probabilistic matching queue. To verify the efficacy and cost-effectiveness of the proposed bicycle-redistribution strategy, multiple simulation runs are conducted with respect to various times of the day. It shows that the resulting optimal rebalancing strategy is batch-based in synchrony with the time heterogeneity in the traffic demand. Furthermore, several managerial insights are provided to shed light on the rule of thumb in practical FFBSS redistribution coordination.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/serv.2021.0287\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/serv.2021.0287","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic Rebalancing Strategy in Free-Float Bicycle Sharing Systems: Orbit Queues and Two-Sided Matching
In populous metropolitan areas, the free-floating bicycle-sharing system (FFBSS) acts as an innovative urban mobility as a service, which provides an ease-of-use feature and extra flexibility in contrast to the traditional shared bicycles with docks. In consideration of customer behaviors, such as abandonment and retrial, which occur in FFBSS, a redistribution strategy for shared bicycles among different user-density locations is presented with an aim to diminish the total operational cost while enhancing the overall service level. To formulate the user and multitype shared bicycle–arrival patterns as nonhomogeneous queues, our results provide a tractable analytical paradigm for a time-varying balancing strategy for FFBSS. The bicycle variation at each virtual zone after each redistribution is determined via a nonstationary queueing model, in which the service time, patience time, and research delay are all subject to general distribution. Then, the bicycle-deployment strategy is evaluated with respect to average queueing length and abandonment rate during a normal workday based on a tailored nonhomogeneous probabilistic matching queue. To verify the efficacy and cost-effectiveness of the proposed bicycle-redistribution strategy, multiple simulation runs are conducted with respect to various times of the day. It shows that the resulting optimal rebalancing strategy is batch-based in synchrony with the time heterogeneity in the traffic demand. Furthermore, several managerial insights are provided to shed light on the rule of thumb in practical FFBSS redistribution coordination.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.