Yifeng Zhang, S. Dou, B. S. Ndzelu, Rui-ping Ma, Dandan Zhang, Xiaowei Zhang, S. Ye, Hongrui Wang
{"title":"玉米秸秆和发酵玉米秸秆还田对土壤有机碳库和腐殖质组成的影响","authors":"Yifeng Zhang, S. Dou, B. S. Ndzelu, Rui-ping Ma, Dandan Zhang, Xiaowei Zhang, S. Ye, Hongrui Wang","doi":"10.5194/soil-2021-105","DOIUrl":null,"url":null,"abstract":"Abstract. In our previous studies, we filtered out fungus (Trichoderma reesei) to have the best ability to transform corn straw into a humic acid-like substance through laboratory incubation experiments. In order to further verify our former findings, we set up a 360 day-field experiment that included three treatments applied under equal C mass: (i) corn straw returned to the field (CS), (ii) fermented corn straw treated with Trichoderma reesei returned to the field (FCS-T), and (iii) blank control treatment (CK). Soil organic carbon (SOC), soil labile organic C components, soil humus composition, and the management levels of SOC pools under the three treatments were analyzed and compared. The results showed that the SOC content of CS and FCS-T treatments increased by 12.71 % and 18.81 %, respectively, compared with CK at 360 d. The humic acid carbon (HA-C) content of the FCS-T treatment was 0.77 g/kg higher than in the CS treatment. Application of FCS-T appeared to promote the significant increase of SOC, carbon pool activity index (CPAI) and carbon pool management index (CPMI) through accumulation of HA-C, humin carbon (HM-C), and easily oxidizable organic carbon (EOC) contents. Application of fermented corn straw treated with Trichoderma reesei (FCS-T) is more valuable and conducive to increasing soil EOC and humus C content than direct application of corn straw.\n","PeriodicalId":22015,"journal":{"name":"Soil Science","volume":"91 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Effects of returning corn straw and fermented corn straw to fields on the soil organic carbon pools and humus composition\",\"authors\":\"Yifeng Zhang, S. Dou, B. S. Ndzelu, Rui-ping Ma, Dandan Zhang, Xiaowei Zhang, S. Ye, Hongrui Wang\",\"doi\":\"10.5194/soil-2021-105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In our previous studies, we filtered out fungus (Trichoderma reesei) to have the best ability to transform corn straw into a humic acid-like substance through laboratory incubation experiments. In order to further verify our former findings, we set up a 360 day-field experiment that included three treatments applied under equal C mass: (i) corn straw returned to the field (CS), (ii) fermented corn straw treated with Trichoderma reesei returned to the field (FCS-T), and (iii) blank control treatment (CK). Soil organic carbon (SOC), soil labile organic C components, soil humus composition, and the management levels of SOC pools under the three treatments were analyzed and compared. The results showed that the SOC content of CS and FCS-T treatments increased by 12.71 % and 18.81 %, respectively, compared with CK at 360 d. The humic acid carbon (HA-C) content of the FCS-T treatment was 0.77 g/kg higher than in the CS treatment. Application of FCS-T appeared to promote the significant increase of SOC, carbon pool activity index (CPAI) and carbon pool management index (CPMI) through accumulation of HA-C, humin carbon (HM-C), and easily oxidizable organic carbon (EOC) contents. Application of fermented corn straw treated with Trichoderma reesei (FCS-T) is more valuable and conducive to increasing soil EOC and humus C content than direct application of corn straw.\\n\",\"PeriodicalId\":22015,\"journal\":{\"name\":\"Soil Science\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5194/soil-2021-105\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/soil-2021-105","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Effects of returning corn straw and fermented corn straw to fields on the soil organic carbon pools and humus composition
Abstract. In our previous studies, we filtered out fungus (Trichoderma reesei) to have the best ability to transform corn straw into a humic acid-like substance through laboratory incubation experiments. In order to further verify our former findings, we set up a 360 day-field experiment that included three treatments applied under equal C mass: (i) corn straw returned to the field (CS), (ii) fermented corn straw treated with Trichoderma reesei returned to the field (FCS-T), and (iii) blank control treatment (CK). Soil organic carbon (SOC), soil labile organic C components, soil humus composition, and the management levels of SOC pools under the three treatments were analyzed and compared. The results showed that the SOC content of CS and FCS-T treatments increased by 12.71 % and 18.81 %, respectively, compared with CK at 360 d. The humic acid carbon (HA-C) content of the FCS-T treatment was 0.77 g/kg higher than in the CS treatment. Application of FCS-T appeared to promote the significant increase of SOC, carbon pool activity index (CPAI) and carbon pool management index (CPMI) through accumulation of HA-C, humin carbon (HM-C), and easily oxidizable organic carbon (EOC) contents. Application of fermented corn straw treated with Trichoderma reesei (FCS-T) is more valuable and conducive to increasing soil EOC and humus C content than direct application of corn straw.
期刊介绍:
Cessation.Soil Science satisfies the professional needs of all scientists and laboratory personnel involved in soil and plant research by publishing primary research reports and critical reviews of basic and applied soil science, especially as it relates to soil and plant studies and general environmental soil science.
Each month, Soil Science presents authoritative research articles from an impressive array of discipline: soil chemistry and biochemistry, physics, fertility and nutrition, soil genesis and morphology, soil microbiology and mineralogy. Of immediate relevance to soil scientists-both industrial and academic-this unique publication also has long-range value for agronomists and environmental scientists.