学习数据库的集合

Angjela Davitkova, Damjan Gjurovski, S. Michel
{"title":"学习数据库的集合","authors":"Angjela Davitkova, Damjan Gjurovski, S. Michel","doi":"10.48786/edbt.2024.07","DOIUrl":null,"url":null,"abstract":"In this work, we consider using deep learning models over a collection of sets to replace traditional approaches utilized in database systems. We propose solutions for data indexing, membership queries, and cardinality estimation. Unlike relational data, learned models over sets need to be permutation invariant and able to deal with variable set sizes. The proposed models are based on the DeepSets architecture and include per-element compression to achieve acceptable accuracy with modest model sizes. We further suggest a hybrid structure with bounded error guarantees using guided learning to mitigate the inherent challenges when working with set data. We outline challenges and opportunities when dealing with set data and demonstrate the suitability of the models through extensive experimental evaluation with one synthetic and two real-world datasets.","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"45 1","pages":"68-80"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning over Sets for Databases\",\"authors\":\"Angjela Davitkova, Damjan Gjurovski, S. Michel\",\"doi\":\"10.48786/edbt.2024.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider using deep learning models over a collection of sets to replace traditional approaches utilized in database systems. We propose solutions for data indexing, membership queries, and cardinality estimation. Unlike relational data, learned models over sets need to be permutation invariant and able to deal with variable set sizes. The proposed models are based on the DeepSets architecture and include per-element compression to achieve acceptable accuracy with modest model sizes. We further suggest a hybrid structure with bounded error guarantees using guided learning to mitigate the inherent challenges when working with set data. We outline challenges and opportunities when dealing with set data and demonstrate the suitability of the models through extensive experimental evaluation with one synthetic and two real-world datasets.\",\"PeriodicalId\":88813,\"journal\":{\"name\":\"Advances in database technology : proceedings. International Conference on Extending Database Technology\",\"volume\":\"45 1\",\"pages\":\"68-80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in database technology : proceedings. International Conference on Extending Database Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48786/edbt.2024.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48786/edbt.2024.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们考虑在一组集合上使用深度学习模型来取代数据库系统中使用的传统方法。我们提出了数据索引、成员查询和基数估计的解决方案。与关系数据不同,集合上的学习模型需要是排列不变的,并且能够处理可变的集合大小。提出的模型基于DeepSets架构,并包括每个元素的压缩,以在适度的模型尺寸下达到可接受的精度。我们进一步建议使用有界误差保证的混合结构,使用引导学习来减轻处理集合数据时的固有挑战。在处理数据集时,我们概述了挑战和机遇,并通过一个合成数据集和两个真实数据集的广泛实验评估来证明模型的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning over Sets for Databases
In this work, we consider using deep learning models over a collection of sets to replace traditional approaches utilized in database systems. We propose solutions for data indexing, membership queries, and cardinality estimation. Unlike relational data, learned models over sets need to be permutation invariant and able to deal with variable set sizes. The proposed models are based on the DeepSets architecture and include per-element compression to achieve acceptable accuracy with modest model sizes. We further suggest a hybrid structure with bounded error guarantees using guided learning to mitigate the inherent challenges when working with set data. We outline challenges and opportunities when dealing with set data and demonstrate the suitability of the models through extensive experimental evaluation with one synthetic and two real-world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computing Generic Abstractions from Application Datasets Fair Spatial Indexing: A paradigm for Group Spatial Fairness. Data Coverage for Detecting Representation Bias in Image Datasets: A Crowdsourcing Approach Auditing for Spatial Fairness TransEdge: Supporting Efficient Read Queries Across Untrusted Edge Nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1