利用COI基因分析印尼海藻养殖场养殖Kappaphycus的遗传多样性

Pustika Ratnawati, N. F. Simatupang, P. R. Pong-Masak, N. Paul, G. Zuccarello
{"title":"利用COI基因分析印尼海藻养殖场养殖Kappaphycus的遗传多样性","authors":"Pustika Ratnawati, N. F. Simatupang, P. R. Pong-Masak, N. Paul, G. Zuccarello","doi":"10.15578/squalen.v15i2.466","DOIUrl":null,"url":null,"abstract":"Indonesia is a major player in the aquaculture of red algae, especially carrageenan producing ‘eucheumatoids’ such as Kappaphycus and Eucheuma. However, many current trade names do not reflect the evolutionary species and updated taxonomy, this is especially the case for eucheumatoid seaweeds that are highly variable in morphology and pigmentation. Genetic variation is also not known for the cultivated eucheumatoids in Indonesia. Therefore, this study aimed to determine the species and the level of genetic variation within species of cultivated eucheumatoids from various farms across Indonesia, spanning 150-1500 km, using the DNA barcoding method. Samples of seaweed were randomly collected at 14 farmed locations between April 2017 and May 2018. For this study the 5-prime end (~ 600 bp) of the mitochondrial-encoded cytochrome oxidase subunit one (COI) was amplified and sequenced. Morphological examination showed that the samples were quite variable in branching pattern and color. All samples collected from farms with floating line cultivation were identified based on COI sequences as Kappaphycus alvarezii and showed no variation in the COI gene. One farm sample with bottom-line cultivation was identified as K. striatus. The low genetic variation is in contrast to the phenotypic variation of samples, indicating that variation and phenotypic responses to environments is still found in samples with implications for growth rates and carrageenan yield and quality. Information about the genetic variation in stocks is important base knowledge for maintaining, expanding and continuing seaweed aquaculture.","PeriodicalId":21935,"journal":{"name":"Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology","volume":"113 1","pages":"65-72"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Genetic Diversity Analysis of Cultivated Kappaphycus in Indonesian Seaweed Farms using COI Gene\",\"authors\":\"Pustika Ratnawati, N. F. Simatupang, P. R. Pong-Masak, N. Paul, G. Zuccarello\",\"doi\":\"10.15578/squalen.v15i2.466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indonesia is a major player in the aquaculture of red algae, especially carrageenan producing ‘eucheumatoids’ such as Kappaphycus and Eucheuma. However, many current trade names do not reflect the evolutionary species and updated taxonomy, this is especially the case for eucheumatoid seaweeds that are highly variable in morphology and pigmentation. Genetic variation is also not known for the cultivated eucheumatoids in Indonesia. Therefore, this study aimed to determine the species and the level of genetic variation within species of cultivated eucheumatoids from various farms across Indonesia, spanning 150-1500 km, using the DNA barcoding method. Samples of seaweed were randomly collected at 14 farmed locations between April 2017 and May 2018. For this study the 5-prime end (~ 600 bp) of the mitochondrial-encoded cytochrome oxidase subunit one (COI) was amplified and sequenced. Morphological examination showed that the samples were quite variable in branching pattern and color. All samples collected from farms with floating line cultivation were identified based on COI sequences as Kappaphycus alvarezii and showed no variation in the COI gene. One farm sample with bottom-line cultivation was identified as K. striatus. The low genetic variation is in contrast to the phenotypic variation of samples, indicating that variation and phenotypic responses to environments is still found in samples with implications for growth rates and carrageenan yield and quality. Information about the genetic variation in stocks is important base knowledge for maintaining, expanding and continuing seaweed aquaculture.\",\"PeriodicalId\":21935,\"journal\":{\"name\":\"Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology\",\"volume\":\"113 1\",\"pages\":\"65-72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15578/squalen.v15i2.466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15578/squalen.v15i2.466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 6

摘要

印度尼西亚是红藻水产养殖的主要参与者,特别是生产角叉菜胶的“类真金藻”,如Kappaphycus和Eucheuma。然而,许多目前的商品名称不能反映进化物种和更新的分类,特别是对于在形态和色素沉着上高度可变的拟真金藻。印度尼西亚栽培的拟真金马的遗传变异也不为人所知。因此,本研究旨在利用DNA条形码方法确定印度尼西亚不同农场种植的拟真金马的种类和遗传变异水平,跨度为150-1500公里。2017年4月至2018年5月期间,在14个养殖地点随机收集了海藻样本。本研究对线粒体编码的细胞色素氧化酶亚基1 (COI)的5- '端(~ 600bp)进行了扩增和测序。形态学检查表明,样品在分支模式和颜色上变化很大。根据COI序列鉴定,从浮线栽培农场收集的所有样本均为卡普蚜,COI基因无变异。一个底线栽培的农场样品被鉴定为纹状金缕霉。低遗传变异与样品的表型变异形成对比,表明样品中仍然存在对生长速度、卡拉胶产量和质量有影响的变异和表型反应。关于种群遗传变异的信息是维持、扩大和继续海藻养殖的重要基础知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic Diversity Analysis of Cultivated Kappaphycus in Indonesian Seaweed Farms using COI Gene
Indonesia is a major player in the aquaculture of red algae, especially carrageenan producing ‘eucheumatoids’ such as Kappaphycus and Eucheuma. However, many current trade names do not reflect the evolutionary species and updated taxonomy, this is especially the case for eucheumatoid seaweeds that are highly variable in morphology and pigmentation. Genetic variation is also not known for the cultivated eucheumatoids in Indonesia. Therefore, this study aimed to determine the species and the level of genetic variation within species of cultivated eucheumatoids from various farms across Indonesia, spanning 150-1500 km, using the DNA barcoding method. Samples of seaweed were randomly collected at 14 farmed locations between April 2017 and May 2018. For this study the 5-prime end (~ 600 bp) of the mitochondrial-encoded cytochrome oxidase subunit one (COI) was amplified and sequenced. Morphological examination showed that the samples were quite variable in branching pattern and color. All samples collected from farms with floating line cultivation were identified based on COI sequences as Kappaphycus alvarezii and showed no variation in the COI gene. One farm sample with bottom-line cultivation was identified as K. striatus. The low genetic variation is in contrast to the phenotypic variation of samples, indicating that variation and phenotypic responses to environments is still found in samples with implications for growth rates and carrageenan yield and quality. Information about the genetic variation in stocks is important base knowledge for maintaining, expanding and continuing seaweed aquaculture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
10
审稿时长
16 weeks
期刊最新文献
The Microstructure and Potential of Chondroitin Sulfate in Shark Cartilage Extract Molecular Assessment of Kappaphycus alvarezii Cultivated in Tarakan based on cox2-3 Spacer Effect of Cooking and Preservation Time on Fish Balls Quality Produced from Pangasius Hypophthalmus Meat By product Metabolites Alteration and Antioxidant Activity of Gracilaria verrucosa After Fermentation Using Aureobasidium melanogenum MTGK.31 Study of Actinotrichia fragilis Indonesian Red Seaweed as Raw Material for Healthy Salt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1