{"title":"FastKLEE:通过减少对类型安全指针的冗余边界检查来加快符号执行","authors":"Haoxin Tu, Lingxiao Jiang, Xuhua Ding, He Jiang","doi":"10.1145/3540250.3558919","DOIUrl":null,"url":null,"abstract":"Symbolic execution (SE) has been widely adopted for automatic program analysis and software testing. Many SE engines (e.g., KLEE or Angr) need to interpret certain Intermediate Representations (IR) of code during execution, which may be slow and costly. Although a plurality of studies proposed to accelerate SE, few of them consider optimizing the internal interpretation operations. In this paper, we propose FastKLEE, a faster SE engine that aims to speed up execution via reducing redundant bound checking of type-safe pointers during IR code interpretation. Specifically, in FastKLEE, a type inference system is first leveraged to classify pointer types (i.e., safe or unsafe) for the most frequently interpreted read/write instructions. Then, a customized memory operation is designed to perform bound checking for only the unsafe pointers and omit redundant checking on safe pointers. We implement FastKLEE on top of the well-known SE engine KLEE and combined it with the notable type inference system CCured. Evaluation results demonstrate that FastKLEE is able to reduce by up to 9.1% (5.6% on average) as the state-of-the-art approach KLEE in terms of the time to explore the same number (i.e., 10k) of execution paths. FastKLEE is opensourced at https://github.com/haoxintu/FastKLEE. A video demo of FastKLEE is available at https://youtu.be/fjV_a3kt-mo.","PeriodicalId":68155,"journal":{"name":"软件产业与工程","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FastKLEE: faster symbolic execution via reducing redundant bound checking of type-safe pointers\",\"authors\":\"Haoxin Tu, Lingxiao Jiang, Xuhua Ding, He Jiang\",\"doi\":\"10.1145/3540250.3558919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symbolic execution (SE) has been widely adopted for automatic program analysis and software testing. Many SE engines (e.g., KLEE or Angr) need to interpret certain Intermediate Representations (IR) of code during execution, which may be slow and costly. Although a plurality of studies proposed to accelerate SE, few of them consider optimizing the internal interpretation operations. In this paper, we propose FastKLEE, a faster SE engine that aims to speed up execution via reducing redundant bound checking of type-safe pointers during IR code interpretation. Specifically, in FastKLEE, a type inference system is first leveraged to classify pointer types (i.e., safe or unsafe) for the most frequently interpreted read/write instructions. Then, a customized memory operation is designed to perform bound checking for only the unsafe pointers and omit redundant checking on safe pointers. We implement FastKLEE on top of the well-known SE engine KLEE and combined it with the notable type inference system CCured. Evaluation results demonstrate that FastKLEE is able to reduce by up to 9.1% (5.6% on average) as the state-of-the-art approach KLEE in terms of the time to explore the same number (i.e., 10k) of execution paths. FastKLEE is opensourced at https://github.com/haoxintu/FastKLEE. A video demo of FastKLEE is available at https://youtu.be/fjV_a3kt-mo.\",\"PeriodicalId\":68155,\"journal\":{\"name\":\"软件产业与工程\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"软件产业与工程\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1145/3540250.3558919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"软件产业与工程","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1145/3540250.3558919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FastKLEE: faster symbolic execution via reducing redundant bound checking of type-safe pointers
Symbolic execution (SE) has been widely adopted for automatic program analysis and software testing. Many SE engines (e.g., KLEE or Angr) need to interpret certain Intermediate Representations (IR) of code during execution, which may be slow and costly. Although a plurality of studies proposed to accelerate SE, few of them consider optimizing the internal interpretation operations. In this paper, we propose FastKLEE, a faster SE engine that aims to speed up execution via reducing redundant bound checking of type-safe pointers during IR code interpretation. Specifically, in FastKLEE, a type inference system is first leveraged to classify pointer types (i.e., safe or unsafe) for the most frequently interpreted read/write instructions. Then, a customized memory operation is designed to perform bound checking for only the unsafe pointers and omit redundant checking on safe pointers. We implement FastKLEE on top of the well-known SE engine KLEE and combined it with the notable type inference system CCured. Evaluation results demonstrate that FastKLEE is able to reduce by up to 9.1% (5.6% on average) as the state-of-the-art approach KLEE in terms of the time to explore the same number (i.e., 10k) of execution paths. FastKLEE is opensourced at https://github.com/haoxintu/FastKLEE. A video demo of FastKLEE is available at https://youtu.be/fjV_a3kt-mo.