具有磁感应效应的椭圆型单/多壁碳纳米管导电粘性纳米流体的海门兹流动的二元解

M. Ferdows, Tahia Tazin, O. Bég, T. Bég
{"title":"具有磁感应效应的椭圆型单/多壁碳纳米管导电粘性纳米流体的海门兹流动的二元解","authors":"M. Ferdows, Tahia Tazin, O. Bég, T. Bég","doi":"10.1115/1.4055278","DOIUrl":null,"url":null,"abstract":"Modern magnetic nanomaterials are increasingly embracing new technologies including smart coatings, intelligent lubricants, and functional working fluids in energy systems. Motivated by studying the manufacturing magnetofluid dynamics of electroconductive viscous nanofluids, in this work, we analyzed the magnetohydrodynamics (MHD) convection flow and heat transfer of an incompressible viscous nanofluid containing carbon nanotubes (CNTs) past a stretching sheet. Magnetic induction effects are included. Similarity solutions are derived where possible in addition to dual branch solutions. Both single-wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs) are considered taking water and kerosene oil as base fluids. The governing continuity, momentum, magnetic induction, and heat conservation partial differential equations are converted to coupled, nonlinear systems of ordinary differential equations via similarity transformations. The emerging control parameters are shown to be Prandtl number (Pr), nanoparticle volume fraction parameter (φ), inverse magnetic Prandtl number (λ), magnetic body force parameter (β) and stretching rate parameter (A), and the type of carbon nanotube. Numerical solutions to the ordinary differential boundary value problem are conducted with the efficient bvp4c solver in matlab. Validation with earlier studies is included. Computations of reduced skin friction and reduced wall heat transfer rate (Nusselt number) are also comprised in order to identify the critical parameter values for the existence of dual solutions (upper and lower branch) for velocity, temperature, and induced magnetic field functions. Dual solutions are shown to exist for some cases studied. The simulations indicate that when the stretching rate ratio parameter is less than 1, SWCNT nanofluids exhibit higher velocity than MWCNT nanofluids with increasing magnetic parameters for water- and kerosene-oil-based CNT nanofluids. Generally, SWCNT nanofluids achieve enhanced heat transfer performance compared to MWCNT nanofluids. Water-based CNT nanofluids also attain greater flow acceleration compared with kerosene-oil-based CNT nanofluids.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Duel Solutions in Hiemenz Flow of an Electro-Conductive Viscous Nanofluid Containing Elliptic Single-/Multi-Wall Carbon Nanotubes With Magnetic Induction Effects\",\"authors\":\"M. Ferdows, Tahia Tazin, O. Bég, T. Bég\",\"doi\":\"10.1115/1.4055278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern magnetic nanomaterials are increasingly embracing new technologies including smart coatings, intelligent lubricants, and functional working fluids in energy systems. Motivated by studying the manufacturing magnetofluid dynamics of electroconductive viscous nanofluids, in this work, we analyzed the magnetohydrodynamics (MHD) convection flow and heat transfer of an incompressible viscous nanofluid containing carbon nanotubes (CNTs) past a stretching sheet. Magnetic induction effects are included. Similarity solutions are derived where possible in addition to dual branch solutions. Both single-wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs) are considered taking water and kerosene oil as base fluids. The governing continuity, momentum, magnetic induction, and heat conservation partial differential equations are converted to coupled, nonlinear systems of ordinary differential equations via similarity transformations. The emerging control parameters are shown to be Prandtl number (Pr), nanoparticle volume fraction parameter (φ), inverse magnetic Prandtl number (λ), magnetic body force parameter (β) and stretching rate parameter (A), and the type of carbon nanotube. Numerical solutions to the ordinary differential boundary value problem are conducted with the efficient bvp4c solver in matlab. Validation with earlier studies is included. Computations of reduced skin friction and reduced wall heat transfer rate (Nusselt number) are also comprised in order to identify the critical parameter values for the existence of dual solutions (upper and lower branch) for velocity, temperature, and induced magnetic field functions. Dual solutions are shown to exist for some cases studied. The simulations indicate that when the stretching rate ratio parameter is less than 1, SWCNT nanofluids exhibit higher velocity than MWCNT nanofluids with increasing magnetic parameters for water- and kerosene-oil-based CNT nanofluids. Generally, SWCNT nanofluids achieve enhanced heat transfer performance compared to MWCNT nanofluids. Water-based CNT nanofluids also attain greater flow acceleration compared with kerosene-oil-based CNT nanofluids.\",\"PeriodicalId\":8652,\"journal\":{\"name\":\"ASME Open Journal of Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Open Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Open Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4055278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

现代磁性纳米材料越来越多地采用新技术,包括智能涂料、智能润滑剂和能源系统中的功能性工作流体。基于对导电黏性纳米流体制造磁流体动力学的研究,本研究分析了含碳纳米管(CNTs)的不可压缩黏性纳米流体通过拉伸片时的磁流体动力学(MHD)对流流动和传热。磁感应效应包括在内。除了对偶分支解外,还尽可能推导出相似解。单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs)均以水和煤油为基液。通过相似变换将控制连续性、动量、磁感应和热守恒的偏微分方程转换为耦合的、非线性的常微分方程系统。新出现的控制参数为Prandtl数(Pr)、纳米颗粒体积分数参数(φ)、逆磁Prandtl数(λ)、磁体力参数(β)和拉伸速率参数(A)以及碳纳米管的类型。利用高效的bvp4c求解器在matlab中对常微分边值问题进行了数值求解。包括早期研究的验证。为了确定速度、温度和感应磁场函数存在对偶解(上分支和下分支)的关键参数值,还包括减少表面摩擦和减少壁面传热率(努塞尔数)的计算。对于所研究的一些情况,证明存在对偶解。模拟结果表明,当拉伸速率比参数小于1时,随着磁性参数的增加,水基和煤油基碳纳米管纳米流体的swcnts纳米流体的速度高于MWCNT纳米流体。一般来说,与MWCNT纳米流体相比,swcnts纳米流体具有更好的传热性能。与煤油基碳纳米管纳米流体相比,水基碳纳米管纳米流体也具有更大的流动加速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Duel Solutions in Hiemenz Flow of an Electro-Conductive Viscous Nanofluid Containing Elliptic Single-/Multi-Wall Carbon Nanotubes With Magnetic Induction Effects
Modern magnetic nanomaterials are increasingly embracing new technologies including smart coatings, intelligent lubricants, and functional working fluids in energy systems. Motivated by studying the manufacturing magnetofluid dynamics of electroconductive viscous nanofluids, in this work, we analyzed the magnetohydrodynamics (MHD) convection flow and heat transfer of an incompressible viscous nanofluid containing carbon nanotubes (CNTs) past a stretching sheet. Magnetic induction effects are included. Similarity solutions are derived where possible in addition to dual branch solutions. Both single-wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs) are considered taking water and kerosene oil as base fluids. The governing continuity, momentum, magnetic induction, and heat conservation partial differential equations are converted to coupled, nonlinear systems of ordinary differential equations via similarity transformations. The emerging control parameters are shown to be Prandtl number (Pr), nanoparticle volume fraction parameter (φ), inverse magnetic Prandtl number (λ), magnetic body force parameter (β) and stretching rate parameter (A), and the type of carbon nanotube. Numerical solutions to the ordinary differential boundary value problem are conducted with the efficient bvp4c solver in matlab. Validation with earlier studies is included. Computations of reduced skin friction and reduced wall heat transfer rate (Nusselt number) are also comprised in order to identify the critical parameter values for the existence of dual solutions (upper and lower branch) for velocity, temperature, and induced magnetic field functions. Dual solutions are shown to exist for some cases studied. The simulations indicate that when the stretching rate ratio parameter is less than 1, SWCNT nanofluids exhibit higher velocity than MWCNT nanofluids with increasing magnetic parameters for water- and kerosene-oil-based CNT nanofluids. Generally, SWCNT nanofluids achieve enhanced heat transfer performance compared to MWCNT nanofluids. Water-based CNT nanofluids also attain greater flow acceleration compared with kerosene-oil-based CNT nanofluids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Current Trends and Innovations in Enhancing the Aerodynamic Performance of Small-Scale, Horizontal Axis Wind Turbines: A Review Effect of Filament Color and Fused Deposition Modeling/Fused Filament Fabrication Process on the Development of Bistability in Switchable Bistable Squares Thermodynamic Analysis of Comprehensive Performance of Carbon Dioxide(R744) and Its Mixture With Ethane(R170) Used in Refrigeration and Heating System at Low Evaporation Temperature Current Status and Emerging Techniques for Measuring the Dielectric Properties of Biological Tissues Replacing All Fossil Fuels With Nuclear-Enabled Hydrogen, Cellulosic Hydrocarbon Biofuels, and Dispatchable Electricity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1