尿酮体丢失导致老年slc5a8缺陷小鼠脑白质变性

L. Suissa, Virginie Flachon, J. Guigonis, C. Olivieri, F. Burel-Vandenbos, J. Guglielmi, D. Ambrosetti, M. Gérard, P. Franken, J. Darcourt, L. Pellerin, T. Pourcher, S. Lindenthal
{"title":"尿酮体丢失导致老年slc5a8缺陷小鼠脑白质变性","authors":"L. Suissa, Virginie Flachon, J. Guigonis, C. Olivieri, F. Burel-Vandenbos, J. Guglielmi, D. Ambrosetti, M. Gérard, P. Franken, J. Darcourt, L. Pellerin, T. Pourcher, S. Lindenthal","doi":"10.1177/0271678X19873662","DOIUrl":null,"url":null,"abstract":"SLC5A8 is a sodium-coupled monocarboxylate and ketone transporter expressed in various epithelial cells. A putative role of SLC5A8 in neuroenergetics has been also hypothesized. To clarify this issue, we studied the cerebral phenotype of SLC5A8-deficient mice during aging. Elderly SLC5A8-deficient mice presented diffuse leukoencephalopathy characterized by intramyelinic oedema without demyelination suggesting chronic energetic crisis. Hypo-metabolism in the white matter of elderly SLC5A8-deficient mice was found using 99mTc-hexamethylpropyleneamine oxime (HMPAO) single-photon emission CT (SPECT). Since the SLC5A8 protein could not be detected in the mouse brain, it was hypothesized that the leukoencephalopathy of aging SLC5A8-deficient mice was caused by the absence of slc5a8 expression in a peripheral organ, i.e. the kidney, where SLC5A8 is strongly expressed. A hyper-excretion of the ketone β-hydroxybutyrate (BHB) in the urine of SLC5A8-deficient mice was observed and showed that SLC5A8-deficient mice suffered a cerebral BHB insufficiency. Elderly SLC5A8-deficient mice also presented altered glucose metabolism. We propose that the continuous renal loss of BHB leads to a chronic energetic deficiency in the brain of elderly SLC5A8-deficient mice who are unable to counterbalance their glucose deficit. This study highlights the importance of alternative energetic substrates in neuroenergetics especially under conditions of restricted glucose availability.","PeriodicalId":15356,"journal":{"name":"Journal of Cerebral Blood Flow & Metabolism","volume":"14 1","pages":"1709 - 1723"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Urinary ketone body loss leads to degeneration of brain white matter in elderly SLC5A8-deficient mice\",\"authors\":\"L. Suissa, Virginie Flachon, J. Guigonis, C. Olivieri, F. Burel-Vandenbos, J. Guglielmi, D. Ambrosetti, M. Gérard, P. Franken, J. Darcourt, L. Pellerin, T. Pourcher, S. Lindenthal\",\"doi\":\"10.1177/0271678X19873662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SLC5A8 is a sodium-coupled monocarboxylate and ketone transporter expressed in various epithelial cells. A putative role of SLC5A8 in neuroenergetics has been also hypothesized. To clarify this issue, we studied the cerebral phenotype of SLC5A8-deficient mice during aging. Elderly SLC5A8-deficient mice presented diffuse leukoencephalopathy characterized by intramyelinic oedema without demyelination suggesting chronic energetic crisis. Hypo-metabolism in the white matter of elderly SLC5A8-deficient mice was found using 99mTc-hexamethylpropyleneamine oxime (HMPAO) single-photon emission CT (SPECT). Since the SLC5A8 protein could not be detected in the mouse brain, it was hypothesized that the leukoencephalopathy of aging SLC5A8-deficient mice was caused by the absence of slc5a8 expression in a peripheral organ, i.e. the kidney, where SLC5A8 is strongly expressed. A hyper-excretion of the ketone β-hydroxybutyrate (BHB) in the urine of SLC5A8-deficient mice was observed and showed that SLC5A8-deficient mice suffered a cerebral BHB insufficiency. Elderly SLC5A8-deficient mice also presented altered glucose metabolism. We propose that the continuous renal loss of BHB leads to a chronic energetic deficiency in the brain of elderly SLC5A8-deficient mice who are unable to counterbalance their glucose deficit. This study highlights the importance of alternative energetic substrates in neuroenergetics especially under conditions of restricted glucose availability.\",\"PeriodicalId\":15356,\"journal\":{\"name\":\"Journal of Cerebral Blood Flow & Metabolism\",\"volume\":\"14 1\",\"pages\":\"1709 - 1723\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cerebral Blood Flow & Metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0271678X19873662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow & Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0271678X19873662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

SLC5A8是一种在多种上皮细胞中表达的钠偶联单羧酸和酮转运蛋白。SLC5A8在神经能量学中的作用也被假设。为了澄清这一问题,我们研究了slc5a8缺陷小鼠在衰老过程中的大脑表型。老年slc5a8缺陷小鼠表现为弥漫性脑白质病,以髓内水肿为特征,无脱髓鞘,提示慢性能量危机。利用99mtc -六甲基丙烯胺肟(HMPAO)单光子发射CT (SPECT)发现老年slc5a8缺陷小鼠白质代谢低下。由于在小鼠大脑中无法检测到SLC5A8蛋白,因此假设衰老SLC5A8缺陷小鼠的白质脑病是由于SLC5A8在SLC5A8强烈表达的外周器官(即肾脏)中缺乏表达引起的。观察到slc5a8缺陷小鼠尿液中β-羟基丁酸酮(BHB)的过量排泄,表明slc5a8缺陷小鼠出现脑BHB功能不全。老年slc5a8缺陷小鼠也表现出葡萄糖代谢的改变。我们提出,BHB的持续肾损失导致老年slc5a8缺陷小鼠的大脑慢性能量缺乏,这些小鼠无法平衡其葡萄糖缺陷。这项研究强调了替代能量底物在神经能量学中的重要性,特别是在限制葡萄糖可用性的条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Urinary ketone body loss leads to degeneration of brain white matter in elderly SLC5A8-deficient mice
SLC5A8 is a sodium-coupled monocarboxylate and ketone transporter expressed in various epithelial cells. A putative role of SLC5A8 in neuroenergetics has been also hypothesized. To clarify this issue, we studied the cerebral phenotype of SLC5A8-deficient mice during aging. Elderly SLC5A8-deficient mice presented diffuse leukoencephalopathy characterized by intramyelinic oedema without demyelination suggesting chronic energetic crisis. Hypo-metabolism in the white matter of elderly SLC5A8-deficient mice was found using 99mTc-hexamethylpropyleneamine oxime (HMPAO) single-photon emission CT (SPECT). Since the SLC5A8 protein could not be detected in the mouse brain, it was hypothesized that the leukoencephalopathy of aging SLC5A8-deficient mice was caused by the absence of slc5a8 expression in a peripheral organ, i.e. the kidney, where SLC5A8 is strongly expressed. A hyper-excretion of the ketone β-hydroxybutyrate (BHB) in the urine of SLC5A8-deficient mice was observed and showed that SLC5A8-deficient mice suffered a cerebral BHB insufficiency. Elderly SLC5A8-deficient mice also presented altered glucose metabolism. We propose that the continuous renal loss of BHB leads to a chronic energetic deficiency in the brain of elderly SLC5A8-deficient mice who are unable to counterbalance their glucose deficit. This study highlights the importance of alternative energetic substrates in neuroenergetics especially under conditions of restricted glucose availability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Orthostatic hypotension and cerebral small vessel disease: A systematic review Microglia contact cerebral vasculature through gaps between astrocyte endfeet Detectability of white matter cerebral blood flow using arterial spin labeling MRI in patients with sickle cell disease: Relevance of flow territory, bolus arrival time, and hematocrit The relative associations of aortic and carotid artery stiffness with CeVD and cognition Refined movement analysis in the Staircase test reveals differential motor deficits in mouse models of stroke
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1