利用智能卡数据探索定制巴士的潜在出行需求*

Rongge Guo, W. Guan, A. Huang, Wen-yi Zhang
{"title":"利用智能卡数据探索定制巴士的潜在出行需求*","authors":"Rongge Guo, W. Guan, A. Huang, Wen-yi Zhang","doi":"10.1109/ITSC.2019.8916843","DOIUrl":null,"url":null,"abstract":"Customized bus (CB) is an innovation mode of public transportation (PT) system to alleviate the traffic congestion. As a demand-based transport, CB holds promise to provide personalized service by aggregating travel demand of individuals. However, the data collected through online surveys are limited and unreliable for the CB operation planning. This paper introduces a methodology to investigate the potential travel demands of CB based on smartcard data (SCD). The methodology proposed here consists of three processes: trip chain generation, origin-destination (OD) recognition and travel mode comparison. Drawing on Beijing as the case study, the smartcard dataset is processed for analyzing the spatial-temporal properties of passenger travel behavior and exploring potential travel demand of CB. The results indicate that the data have a workplace-oriented pattern and CB is suitable for passengers with long trip distances (beyond 8 km). These findings advance key points to future CB operation as it is associated with the route design and vehicle arrangement.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"195 1","pages":"2645-2650"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Exploring Potential Travel Demand of Customized Bus Using Smartcard Data*\",\"authors\":\"Rongge Guo, W. Guan, A. Huang, Wen-yi Zhang\",\"doi\":\"10.1109/ITSC.2019.8916843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Customized bus (CB) is an innovation mode of public transportation (PT) system to alleviate the traffic congestion. As a demand-based transport, CB holds promise to provide personalized service by aggregating travel demand of individuals. However, the data collected through online surveys are limited and unreliable for the CB operation planning. This paper introduces a methodology to investigate the potential travel demands of CB based on smartcard data (SCD). The methodology proposed here consists of three processes: trip chain generation, origin-destination (OD) recognition and travel mode comparison. Drawing on Beijing as the case study, the smartcard dataset is processed for analyzing the spatial-temporal properties of passenger travel behavior and exploring potential travel demand of CB. The results indicate that the data have a workplace-oriented pattern and CB is suitable for passengers with long trip distances (beyond 8 km). These findings advance key points to future CB operation as it is associated with the route design and vehicle arrangement.\",\"PeriodicalId\":6717,\"journal\":{\"name\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"volume\":\"195 1\",\"pages\":\"2645-2650\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2019.8916843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8916843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

定制公交(CB)是一种缓解交通拥堵的公共交通(PT)系统创新模式。CB作为一种基于需求的交通工具,通过聚合个人的出行需求来提供个性化的服务。然而,通过在线调查收集的数据有限,不可靠的CB运营计划。本文介绍了一种基于智能卡数据(SCD)的CB潜在旅行需求研究方法。本文提出的方法包括三个过程:出行链生成、始发目的地识别和出行模式比较。以北京市为例,对智能卡数据进行处理,分析旅客出行行为的时空特征,挖掘潜在的CB出行需求。结果表明,数据具有以工作场所为导向的模式,CB适用于长途旅行(超过8公里)的乘客。这些发现为未来的CB运营提出了关键点,因为它与路线设计和车辆安排有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring Potential Travel Demand of Customized Bus Using Smartcard Data*
Customized bus (CB) is an innovation mode of public transportation (PT) system to alleviate the traffic congestion. As a demand-based transport, CB holds promise to provide personalized service by aggregating travel demand of individuals. However, the data collected through online surveys are limited and unreliable for the CB operation planning. This paper introduces a methodology to investigate the potential travel demands of CB based on smartcard data (SCD). The methodology proposed here consists of three processes: trip chain generation, origin-destination (OD) recognition and travel mode comparison. Drawing on Beijing as the case study, the smartcard dataset is processed for analyzing the spatial-temporal properties of passenger travel behavior and exploring potential travel demand of CB. The results indicate that the data have a workplace-oriented pattern and CB is suitable for passengers with long trip distances (beyond 8 km). These findings advance key points to future CB operation as it is associated with the route design and vehicle arrangement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reliable Monocular Ego-Motion Estimation System in Rainy Urban Environments Coarse-to-Fine Luminance Estimation for Low-Light Image Enhancement in Maritime Video Surveillance Vehicle Occupancy Detection for HOV/HOT Lanes Enforcement Road Roughness Crowd-Sensing with Smartphone Apps LACI: Low-effort Automatic Calibration of Infrastructure Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1