Gokul Nanda, Nithin Chandran, Ganesh Babu Thiyagarajan, R. Devasia, Ravi Kumar
{"title":"火花等离子烧结Zr-La-B-C (O)基前驱体衍生陶瓷的力学响应和热膨胀特性","authors":"Gokul Nanda, Nithin Chandran, Ganesh Babu Thiyagarajan, R. Devasia, Ravi Kumar","doi":"10.1080/17436753.2022.2031666","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this work, a Zr–La–B–C(O)-based precursor-derived ceramic system is spark plasma sintered at 1600°C for 10 min. Chemical and phase analysis of the sintered ceramic reveals nanocrystalline ultra-high temperature (UHT) phases of ZrB2, ZrC, and La2Zr2O7 embedded in a glassy carbon matrix. A comprehensive evaluation of mechanical properties and thermal expansion characteristics correlates well with the presence of phases. Depth-sensing nanoindentation exemplifies high elastic recovery of 91% typically seen in glassy carbons. The hardness and Young’s modulus measured to be ∼4.5 and ∼29.5 GPa respectively, seem to be governed mainly by the presence of glassy carbon, and secondarily by stiff B–C bonds and the UHT phases. The linear coefficient of thermal expansion measured from 130°C to 1550°C is ∼7.9 × 10−6 K−1 and the thermal expansion behaviour is found to be strongly driven by the constituent UHT phases.","PeriodicalId":7224,"journal":{"name":"Advances in Applied Ceramics","volume":"1 1","pages":"31 - 38"},"PeriodicalIF":1.3000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical response and thermal expansion characteristics of spark plasma sintered Zr–La–B–C(O)-based precursor-derived ceramics\",\"authors\":\"Gokul Nanda, Nithin Chandran, Ganesh Babu Thiyagarajan, R. Devasia, Ravi Kumar\",\"doi\":\"10.1080/17436753.2022.2031666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this work, a Zr–La–B–C(O)-based precursor-derived ceramic system is spark plasma sintered at 1600°C for 10 min. Chemical and phase analysis of the sintered ceramic reveals nanocrystalline ultra-high temperature (UHT) phases of ZrB2, ZrC, and La2Zr2O7 embedded in a glassy carbon matrix. A comprehensive evaluation of mechanical properties and thermal expansion characteristics correlates well with the presence of phases. Depth-sensing nanoindentation exemplifies high elastic recovery of 91% typically seen in glassy carbons. The hardness and Young’s modulus measured to be ∼4.5 and ∼29.5 GPa respectively, seem to be governed mainly by the presence of glassy carbon, and secondarily by stiff B–C bonds and the UHT phases. The linear coefficient of thermal expansion measured from 130°C to 1550°C is ∼7.9 × 10−6 K−1 and the thermal expansion behaviour is found to be strongly driven by the constituent UHT phases.\",\"PeriodicalId\":7224,\"journal\":{\"name\":\"Advances in Applied Ceramics\",\"volume\":\"1 1\",\"pages\":\"31 - 38\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/17436753.2022.2031666\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/17436753.2022.2031666","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Mechanical response and thermal expansion characteristics of spark plasma sintered Zr–La–B–C(O)-based precursor-derived ceramics
ABSTRACT In this work, a Zr–La–B–C(O)-based precursor-derived ceramic system is spark plasma sintered at 1600°C for 10 min. Chemical and phase analysis of the sintered ceramic reveals nanocrystalline ultra-high temperature (UHT) phases of ZrB2, ZrC, and La2Zr2O7 embedded in a glassy carbon matrix. A comprehensive evaluation of mechanical properties and thermal expansion characteristics correlates well with the presence of phases. Depth-sensing nanoindentation exemplifies high elastic recovery of 91% typically seen in glassy carbons. The hardness and Young’s modulus measured to be ∼4.5 and ∼29.5 GPa respectively, seem to be governed mainly by the presence of glassy carbon, and secondarily by stiff B–C bonds and the UHT phases. The linear coefficient of thermal expansion measured from 130°C to 1550°C is ∼7.9 × 10−6 K−1 and the thermal expansion behaviour is found to be strongly driven by the constituent UHT phases.
期刊介绍:
Advances in Applied Ceramics: Structural, Functional and Bioceramics provides international coverage of high-quality research on functional ceramics, engineering ceramics and bioceramics.