选择聚合分类器来预测技术对象的状态

D. A. Zhukov, V. Klyachkin, V. Krasheninnikov, Yu E Kuvayskova
{"title":"选择聚合分类器来预测技术对象的状态","authors":"D. A. Zhukov, V. Klyachkin, V. Krasheninnikov, Yu E Kuvayskova","doi":"10.18287/1613-0073-2019-2416-361-367","DOIUrl":null,"url":null,"abstract":"The basic data in the problem of the prediction of technical object’s state of health based on the known indicators of its operation are the known results of the object state estimation by information about previous service. The problem may be solved using the machine learning methods, it reduces to binary classification of states of the object. The research was conducted in the Matlab environment, ten various basic methods of machine learning were used: naive Bayes classifier, neural networks, bagging of decision trees and others. In order to improve quality of healthy state identification, it has been suggested that aggregated methods combining several basic classifiers should be used. This paper addresses the issue of selection of the best aggregated classifier. The effectiveness of such approach has been confirmed by numerous tests of real-world objects.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Selection of aggregated classifiers for the prediction of the state of technical objects\",\"authors\":\"D. A. Zhukov, V. Klyachkin, V. Krasheninnikov, Yu E Kuvayskova\",\"doi\":\"10.18287/1613-0073-2019-2416-361-367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The basic data in the problem of the prediction of technical object’s state of health based on the known indicators of its operation are the known results of the object state estimation by information about previous service. The problem may be solved using the machine learning methods, it reduces to binary classification of states of the object. The research was conducted in the Matlab environment, ten various basic methods of machine learning were used: naive Bayes classifier, neural networks, bagging of decision trees and others. In order to improve quality of healthy state identification, it has been suggested that aggregated methods combining several basic classifiers should be used. This paper addresses the issue of selection of the best aggregated classifier. The effectiveness of such approach has been confirmed by numerous tests of real-world objects.\",\"PeriodicalId\":10486,\"journal\":{\"name\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/1613-0073-2019-2416-361-367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2416-361-367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

基于已知运行指标的技术对象健康状态预测问题中的基础数据是利用以往服务信息对技术对象进行状态估计的已知结果。这个问题可以使用机器学习方法来解决,它可以简化为对象状态的二元分类。研究在Matlab环境下进行,使用了十种不同的机器学习基本方法:朴素贝叶斯分类器、神经网络、决策树bagging等。为了提高健康状态识别的质量,建议采用几种基本分类器组合的聚合方法。本文研究了最佳聚合分类器的选择问题。这种方法的有效性已经通过对现实世界物体的大量测试得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selection of aggregated classifiers for the prediction of the state of technical objects
The basic data in the problem of the prediction of technical object’s state of health based on the known indicators of its operation are the known results of the object state estimation by information about previous service. The problem may be solved using the machine learning methods, it reduces to binary classification of states of the object. The research was conducted in the Matlab environment, ten various basic methods of machine learning were used: naive Bayes classifier, neural networks, bagging of decision trees and others. In order to improve quality of healthy state identification, it has been suggested that aggregated methods combining several basic classifiers should be used. This paper addresses the issue of selection of the best aggregated classifier. The effectiveness of such approach has been confirmed by numerous tests of real-world objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of optimal configurations of a convolutional neural network for the identification of objects in real-time Recognition of forest and shrub communities on the base of remotely sensed data supported by ground studies Selection of aggregated classifiers for the prediction of the state of technical objects Method for reconstructing the real coordinates of an object from its plane image Using Models of Parallel Specialized Processors to Solve the Problem of Signal Separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1