{"title":"近似积分方程理论能准确预测溶剂化热力学吗","authors":"M. Misin","doi":"10.5281/zenodo.495336","DOIUrl":null,"url":null,"abstract":"The thesis focuses on the prediction of solvation thermodynamics using integral equation theories. Our main goal is to improve the approach using a rational correction. We achieve it by extending recently introduced pressure correction, and rationalizing it in the context of solvation entropy. The improved model (to which we refer as advanced pressure correction) is rather universal. It can accurately predict solvation free energies in water at both ambient and non-ambient temperatures, is capable of addressing ionic solutes and salt solutions, and can be extended to non-aqueous systems. The developed approach can be used to model processes in biological systems, as well as to extend related theoretical models further.","PeriodicalId":8439,"journal":{"name":"arXiv: Chemical Physics","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Can approximate integral equation theories accurately predict solvation thermodynamics\",\"authors\":\"M. Misin\",\"doi\":\"10.5281/zenodo.495336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thesis focuses on the prediction of solvation thermodynamics using integral equation theories. Our main goal is to improve the approach using a rational correction. We achieve it by extending recently introduced pressure correction, and rationalizing it in the context of solvation entropy. The improved model (to which we refer as advanced pressure correction) is rather universal. It can accurately predict solvation free energies in water at both ambient and non-ambient temperatures, is capable of addressing ionic solutes and salt solutions, and can be extended to non-aqueous systems. The developed approach can be used to model processes in biological systems, as well as to extend related theoretical models further.\",\"PeriodicalId\":8439,\"journal\":{\"name\":\"arXiv: Chemical Physics\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/zenodo.495336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/zenodo.495336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Can approximate integral equation theories accurately predict solvation thermodynamics
The thesis focuses on the prediction of solvation thermodynamics using integral equation theories. Our main goal is to improve the approach using a rational correction. We achieve it by extending recently introduced pressure correction, and rationalizing it in the context of solvation entropy. The improved model (to which we refer as advanced pressure correction) is rather universal. It can accurately predict solvation free energies in water at both ambient and non-ambient temperatures, is capable of addressing ionic solutes and salt solutions, and can be extended to non-aqueous systems. The developed approach can be used to model processes in biological systems, as well as to extend related theoretical models further.