{"title":"热、酸和机械化学活化蒙脱土对放射性核素U(VI)和Sr(II)的环境保护性能","authors":"I. Kovalchuk","doi":"10.3390/eng4030122","DOIUrl":null,"url":null,"abstract":"Low-cost sorption materials based on the clay mineral of the smectite group—montmorillonite—were used for the removal of radionuclides uranium (VI) and strontium (II) from contaminated water. A wide range of industrial methods such as thermal treatment, acid activation, and mechanochemical activation were applied. Complex methods, such as SEM microscopy analysis, X-ray powder diffraction (XRD), thermal analysis, and nitrogen adsorption–desorption at −196 °C, were used to assess the characteristics of the structure of the obtained materials. The thermal treatment, acid activation, and mechanochemical activation resulted in changes in the surface properties of the clay minerals: specific surface area, porosity, and distribution of active sites. It was established that the mechanochemical activation of montmorillonite significantly increases the sorption characteristics of the material for U(VI) and Sr(II) and the acid activation of montmorillonite increases it for U(VI). The appropriateness of the experimental adsorption values for U(VI) and Sr(II) on modified montmorillonite to Langmuir and Freundlich models was found. Independently of the changes induced by acid attack, calcinations, or milling, the sorption of U(VI) and Sr(II) ions on treated montmorillonite occurs on a homogeneous surface through monolayer adsorption in a similar fashion to natural montmorillonite. Water purification technologies and modern environmental protection technologies may successfully use the obtained clay-based sorbents.","PeriodicalId":10630,"journal":{"name":"Comput. Chem. Eng.","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of Thermal-, Acid-, and Mechanochemical-Activated Montmorillonite for Environmental Protection from Radionuclides U(VI) and Sr(II)\",\"authors\":\"I. Kovalchuk\",\"doi\":\"10.3390/eng4030122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-cost sorption materials based on the clay mineral of the smectite group—montmorillonite—were used for the removal of radionuclides uranium (VI) and strontium (II) from contaminated water. A wide range of industrial methods such as thermal treatment, acid activation, and mechanochemical activation were applied. Complex methods, such as SEM microscopy analysis, X-ray powder diffraction (XRD), thermal analysis, and nitrogen adsorption–desorption at −196 °C, were used to assess the characteristics of the structure of the obtained materials. The thermal treatment, acid activation, and mechanochemical activation resulted in changes in the surface properties of the clay minerals: specific surface area, porosity, and distribution of active sites. It was established that the mechanochemical activation of montmorillonite significantly increases the sorption characteristics of the material for U(VI) and Sr(II) and the acid activation of montmorillonite increases it for U(VI). The appropriateness of the experimental adsorption values for U(VI) and Sr(II) on modified montmorillonite to Langmuir and Freundlich models was found. Independently of the changes induced by acid attack, calcinations, or milling, the sorption of U(VI) and Sr(II) ions on treated montmorillonite occurs on a homogeneous surface through monolayer adsorption in a similar fashion to natural montmorillonite. Water purification technologies and modern environmental protection technologies may successfully use the obtained clay-based sorbents.\",\"PeriodicalId\":10630,\"journal\":{\"name\":\"Comput. Chem. Eng.\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Chem. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/eng4030122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Chem. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/eng4030122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance of Thermal-, Acid-, and Mechanochemical-Activated Montmorillonite for Environmental Protection from Radionuclides U(VI) and Sr(II)
Low-cost sorption materials based on the clay mineral of the smectite group—montmorillonite—were used for the removal of radionuclides uranium (VI) and strontium (II) from contaminated water. A wide range of industrial methods such as thermal treatment, acid activation, and mechanochemical activation were applied. Complex methods, such as SEM microscopy analysis, X-ray powder diffraction (XRD), thermal analysis, and nitrogen adsorption–desorption at −196 °C, were used to assess the characteristics of the structure of the obtained materials. The thermal treatment, acid activation, and mechanochemical activation resulted in changes in the surface properties of the clay minerals: specific surface area, porosity, and distribution of active sites. It was established that the mechanochemical activation of montmorillonite significantly increases the sorption characteristics of the material for U(VI) and Sr(II) and the acid activation of montmorillonite increases it for U(VI). The appropriateness of the experimental adsorption values for U(VI) and Sr(II) on modified montmorillonite to Langmuir and Freundlich models was found. Independently of the changes induced by acid attack, calcinations, or milling, the sorption of U(VI) and Sr(II) ions on treated montmorillonite occurs on a homogeneous surface through monolayer adsorption in a similar fashion to natural montmorillonite. Water purification technologies and modern environmental protection technologies may successfully use the obtained clay-based sorbents.