SLACID——面向列的内存数据库系统中的稀疏线性代数

D. Kernert, F. Köhler, Wolfgang Lehner
{"title":"SLACID——面向列的内存数据库系统中的稀疏线性代数","authors":"D. Kernert, F. Köhler, Wolfgang Lehner","doi":"10.1145/2618243.2618254","DOIUrl":null,"url":null,"abstract":"Scientific computations and analytical business applications are often based on linear algebra operations on large, sparse matrices. With the hardware shift of the primary storage from disc into memory it is now feasible to execute linear algebra queries directly in the database engine. This paper presents and compares different approaches of storing sparse matrices in an in-memory column-oriented database system. We show that a system layout derived from the compressed sparse row representation integrates well with a columnar database design and that the resulting architecture is moreover amenable to a wide range of non-numerical use cases when dictionary encoding is used. Dynamic matrix manipulation operations, like online insertion or deletion of elements, are not covered by most linear algebra frameworks. Therefore, we present a hybrid architecture that consists of a read-optimized main and a write-optimized delta structure and evaluate the performance for dynamic sparse matrix workloads by applying workflows of nuclear science and network graphs.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"23 1","pages":"11:1-11:12"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"SLACID - sparse linear algebra in a column-oriented in-memory database system\",\"authors\":\"D. Kernert, F. Köhler, Wolfgang Lehner\",\"doi\":\"10.1145/2618243.2618254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific computations and analytical business applications are often based on linear algebra operations on large, sparse matrices. With the hardware shift of the primary storage from disc into memory it is now feasible to execute linear algebra queries directly in the database engine. This paper presents and compares different approaches of storing sparse matrices in an in-memory column-oriented database system. We show that a system layout derived from the compressed sparse row representation integrates well with a columnar database design and that the resulting architecture is moreover amenable to a wide range of non-numerical use cases when dictionary encoding is used. Dynamic matrix manipulation operations, like online insertion or deletion of elements, are not covered by most linear algebra frameworks. Therefore, we present a hybrid architecture that consists of a read-optimized main and a write-optimized delta structure and evaluate the performance for dynamic sparse matrix workloads by applying workflows of nuclear science and network graphs.\",\"PeriodicalId\":74773,\"journal\":{\"name\":\"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management\",\"volume\":\"23 1\",\"pages\":\"11:1-11:12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2618243.2618254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2618243.2618254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

科学计算和分析业务应用通常基于对大型稀疏矩阵的线性代数运算。随着主存储从磁盘到内存的硬件转移,现在可以直接在数据库引擎中执行线性代数查询。本文提出并比较了在面向列的内存数据库系统中存储稀疏矩阵的不同方法。我们表明,从压缩稀疏行表示派生的系统布局与柱状数据库设计集成得很好,并且当使用字典编码时,所得到的架构还适用于广泛的非数值用例。动态矩阵操作操作,如在线插入或删除元素,不包括在大多数线性代数框架中。因此,我们提出了一个由读优化主结构和写优化增量结构组成的混合架构,并通过应用核科学和网络图的工作流来评估动态稀疏矩阵工作负载的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SLACID - sparse linear algebra in a column-oriented in-memory database system
Scientific computations and analytical business applications are often based on linear algebra operations on large, sparse matrices. With the hardware shift of the primary storage from disc into memory it is now feasible to execute linear algebra queries directly in the database engine. This paper presents and compares different approaches of storing sparse matrices in an in-memory column-oriented database system. We show that a system layout derived from the compressed sparse row representation integrates well with a columnar database design and that the resulting architecture is moreover amenable to a wide range of non-numerical use cases when dictionary encoding is used. Dynamic matrix manipulation operations, like online insertion or deletion of elements, are not covered by most linear algebra frameworks. Therefore, we present a hybrid architecture that consists of a read-optimized main and a write-optimized delta structure and evaluate the performance for dynamic sparse matrix workloads by applying workflows of nuclear science and network graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Co-Evolution of Data-Centric Ecosystems. Data perturbation for outlier detection ensembles SLACID - sparse linear algebra in a column-oriented in-memory database system SensorBench: benchmarking approaches to processing wireless sensor network data Efficient data management and statistics with zero-copy integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1