{"title":"面向低端物联网的硬件加速操作系统","authors":"Miguel Silva, T. Gomes, S. Pinto","doi":"10.1109/RTCSA55878.2022.00009","DOIUrl":null,"url":null,"abstract":"There is increasing pressure to optimize Internet of things (IoT) low-end devices. The ever-growing number of requirements and constraints is pushing towards maximizing performance and real-time, but simultaneously minimizing power consumption, form factor, and memory footprint. This has motivated the adoption of Field-Programmable Gate Array (FPGA) technology to accelerate computing-intensive workloads in hardware. However, and despite the ongoing trend of migrating application-level tasks to hardware, recently, the offload of system software such as operating system (OS) services has received little attention. This paper presents CHAMELIOT, a framework for FPGA-based IoT platforms that provides agnostic hardware acceleration to OS services by leveraging RISC-V technology. CHAMELIOT allows for developers to run unmodified applications in a set of well-established IoT OSes. Currently, the framework has support for RIOT, Zephyr, and FreeRTOS. The evaluation showed that latency and determinism can be enhanced up to 10x while the system’s performance can be increased to nearly 200%. CHAMELIOT will be open-sourced.","PeriodicalId":38446,"journal":{"name":"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)","volume":"284 1 1","pages":"21-30"},"PeriodicalIF":0.5000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agnostic Hardware-Accelerated Operating System for Low-End IoT\",\"authors\":\"Miguel Silva, T. Gomes, S. Pinto\",\"doi\":\"10.1109/RTCSA55878.2022.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is increasing pressure to optimize Internet of things (IoT) low-end devices. The ever-growing number of requirements and constraints is pushing towards maximizing performance and real-time, but simultaneously minimizing power consumption, form factor, and memory footprint. This has motivated the adoption of Field-Programmable Gate Array (FPGA) technology to accelerate computing-intensive workloads in hardware. However, and despite the ongoing trend of migrating application-level tasks to hardware, recently, the offload of system software such as operating system (OS) services has received little attention. This paper presents CHAMELIOT, a framework for FPGA-based IoT platforms that provides agnostic hardware acceleration to OS services by leveraging RISC-V technology. CHAMELIOT allows for developers to run unmodified applications in a set of well-established IoT OSes. Currently, the framework has support for RIOT, Zephyr, and FreeRTOS. The evaluation showed that latency and determinism can be enhanced up to 10x while the system’s performance can be increased to nearly 200%. CHAMELIOT will be open-sourced.\",\"PeriodicalId\":38446,\"journal\":{\"name\":\"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)\",\"volume\":\"284 1 1\",\"pages\":\"21-30\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTCSA55878.2022.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTCSA55878.2022.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Agnostic Hardware-Accelerated Operating System for Low-End IoT
There is increasing pressure to optimize Internet of things (IoT) low-end devices. The ever-growing number of requirements and constraints is pushing towards maximizing performance and real-time, but simultaneously minimizing power consumption, form factor, and memory footprint. This has motivated the adoption of Field-Programmable Gate Array (FPGA) technology to accelerate computing-intensive workloads in hardware. However, and despite the ongoing trend of migrating application-level tasks to hardware, recently, the offload of system software such as operating system (OS) services has received little attention. This paper presents CHAMELIOT, a framework for FPGA-based IoT platforms that provides agnostic hardware acceleration to OS services by leveraging RISC-V technology. CHAMELIOT allows for developers to run unmodified applications in a set of well-established IoT OSes. Currently, the framework has support for RIOT, Zephyr, and FreeRTOS. The evaluation showed that latency and determinism can be enhanced up to 10x while the system’s performance can be increased to nearly 200%. CHAMELIOT will be open-sourced.