PyTER: Python类型错误的有效程序修复

Wonseok Oh, Hakjoo Oh
{"title":"PyTER: Python类型错误的有效程序修复","authors":"Wonseok Oh, Hakjoo Oh","doi":"10.1145/3540250.3549130","DOIUrl":null,"url":null,"abstract":"We present PyTER, an automated program repair (APR) technique for Python type errors. Python developers struggle with type error exceptions that are prevalent and difficult to fix. Despite the importance, however, automatically repairing type errors in dynamically typed languages such as Python has received little attention in the APR community and no existing techniques are readily available for practical use. PyTER is the first technique that is carefully designed to fix diverse type errors in real-world Python applications. To this end, we present a novel APR approach that uses dynamic and static analyses to infer correct and incorrect types of program variables, and leverage their difference to effectively identify faulty locations and patch candidates. We evaluated PyTER on 93 type errors collected from open-source projects. The result shows that PyTER is able to fix 48.4% of them with a precision of 77.6%.","PeriodicalId":68155,"journal":{"name":"软件产业与工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"PyTER: effective program repair for Python type errors\",\"authors\":\"Wonseok Oh, Hakjoo Oh\",\"doi\":\"10.1145/3540250.3549130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present PyTER, an automated program repair (APR) technique for Python type errors. Python developers struggle with type error exceptions that are prevalent and difficult to fix. Despite the importance, however, automatically repairing type errors in dynamically typed languages such as Python has received little attention in the APR community and no existing techniques are readily available for practical use. PyTER is the first technique that is carefully designed to fix diverse type errors in real-world Python applications. To this end, we present a novel APR approach that uses dynamic and static analyses to infer correct and incorrect types of program variables, and leverage their difference to effectively identify faulty locations and patch candidates. We evaluated PyTER on 93 type errors collected from open-source projects. The result shows that PyTER is able to fix 48.4% of them with a precision of 77.6%.\",\"PeriodicalId\":68155,\"journal\":{\"name\":\"软件产业与工程\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"软件产业与工程\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1145/3540250.3549130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"软件产业与工程","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1145/3540250.3549130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出PyTER,一种Python类型错误的自动程序修复(APR)技术。Python开发人员正在与普遍存在且难以修复的类型错误异常作斗争。然而,尽管在动态类型语言(如Python)中自动修复类型错误很重要,但在APR社区中却很少受到关注,而且没有现成的技术可供实际使用。PyTER是第一种被精心设计用于修复实际Python应用程序中各种类型错误的技术。为此,我们提出了一种新的APR方法,该方法使用动态和静态分析来推断正确和不正确的程序变量类型,并利用它们的差异来有效地识别故障位置和候选补丁。我们对从开源项目中收集的93种类型错误进行了PyTER评估。结果表明,PyTER能够固定其中的48.4%,精度为77.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PyTER: effective program repair for Python type errors
We present PyTER, an automated program repair (APR) technique for Python type errors. Python developers struggle with type error exceptions that are prevalent and difficult to fix. Despite the importance, however, automatically repairing type errors in dynamically typed languages such as Python has received little attention in the APR community and no existing techniques are readily available for practical use. PyTER is the first technique that is carefully designed to fix diverse type errors in real-world Python applications. To this end, we present a novel APR approach that uses dynamic and static analyses to infer correct and incorrect types of program variables, and leverage their difference to effectively identify faulty locations and patch candidates. We evaluated PyTER on 93 type errors collected from open-source projects. The result shows that PyTER is able to fix 48.4% of them with a precision of 77.6%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
676
期刊最新文献
Improving Grading Outcomes in Software Engineering Projects Through Automated Contributions Summaries GRADESTYLE: GitHub-Integrated and Automated Assessment of Java Code Style Improving Assessment of Programming Pattern Knowledge through Code Editing and Revision Designing for Real People: Teaching Agility through User-Centric Service Design Using Focus to Personalise Learning and Feedback in Software Engineering Education
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1